Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка ЛА 2011 для бакалавров ЗО.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
550.91 Кб
Скачать

Тема 4. Линейные операторы

Понятие линейного оператора. Образ и прообраз векторов. Матрица линейного оператора в заданном базисе. Ранг оператора. Операции над линейными операторами. Нулевой и тождественный операторы. Собственные векторы и собственные значения линейного оператора (матрицы). Характеристический многочлен матрицы. Диагональный вид матрицы линейного оператора в базисе, состоящем из его собственных векторов. ([1, § 3.6, 3.7]; [2, § 3.3, 3.4] или [3, § 3.6, 3.7, 3.12, 3.13]).

В этой теме рассматривается одно из базовых понятий линейной алгебры – понятие линейного оператора (преобразования, отображения), представляющего закон (правило), по которому каждому вектору х n-мерного пространства ставится в соответствие один вектор y m-мерного пространства . При оператор обращает в себя.

Линейность оператора определяется выполнением свойств аддитивности и однородности оператора [1, § 3.6] или [3, § 3.6]. Нужно знать, что каждому линейному оператору соответствует матрица А в некотором базисе . Верно и обратное утверждение . С помощью этой матрицы для любого вектора х можно найти его образ – вектор y.

Особую роль в приложениях линейной алгебры играют векторы, которые под воздействием линейного оператора преобразуются в новые векторы, коллинеарные исходным. Такие векторы получили название собственных векторов оператора (матрицы А), а соответствующие им числа – собственных значений оператора (матрицы А). Точные определения и нахождение собственных векторов и значений приведены в [1, § 3.7, пример 3.7] или [3, § 3.7, пример 3.7].

Если базис линейного оператора составить из собственных векторов, то матрица оператора имеет наиболее простой вид и представляет собой диагональную матрицу, а соответствующая операция называется приведением данной матрицы к диагональному виду ([1, пример 3.8] или [3, пример 3.8]).

Тема 5. Квадратичные формы

Квадратичная форма (определение). Матрица квадратичной формы. Матричная форма записи квадратичной формы. Канонический вид и ранг квадратичной формы. Закон инерции квадратичных форм. Положительно и отрицательно определенная, знакоопределенная квадратичные формы. Критерий определенности квадратичной формы через собственные значения ее матрицы. Критерий Сильвестра. ([1, § 3.8], [2, § 3.5] или [3, § 3.8, 3.14]).

Квадратичные формы достаточно часто возникают при решении прикладных задач. Если в n-мерном линейном пространстве выбрать некоторый базис, то квадратичную форму можно рассматривать как некоторую функцию векторного аргумента .

Необходимо знать определение и матричную запись квадратичной формы, ее канонический вид. Уметь приводить в простых случаях квадратичную форму к каноническому виду, имея в виду, что это возможно сделать многими способами, но ранг квадратичной формы при этом не меняется.

Студент должен владеть двумя способами исследования на знакоопределенность квадратичной формы (с помощью собственных значений ее матрицы и критерия Сильвестра). Например, очевидно, что квадратичная форма (т.е. ) является знакоположительной. В этом можно убедиться с помощью отмеченных критериев, ибо матрица квадратичной формы , как нетрудно показать, имеет положительные собственные значения , , а главные миноры , также положительные. А квадратичная форма не является знакоопределенной, так как ее матрица имеет разные по знаку собственные значения и , а главные миноры , чередуются по знаку, начиная с положительного значения (при , квадратичная форма была бы знакоотрицательной) – (см. [1, примеры 3.11, 3.12], [3, примеры 3.11, 3.12, 3.109, 3.110]).