- •Оглавление
- •Предисловие
- •Введение
- •Модуль 1. Структура и методы синтеза полимеров
- •1.1. Структура макромолекул.
- •Гетероцепные полимеры различных классов:
- •Энергия различных связей между структурными единицами макромолекулы:
- •Показатели термодинамической гибкости полимеров в конформации макромолекулярного клубка:
- •1.2. Надмолекулярная структура
- •1.3. Методы синтеза полимеров
- •Типы структур полибутадиена и полиизопрена, получаемые на катализаторах Циглера-Натта
- •Контрольные вопросы к главе 1.
- •Модуль 2. Физические и химические свойства полимеров.
- •2.1. Физические и фазовые состояния и переходы полимеров.
- •2.2. Релаксационные свойства полимеров.
- •2.3. Стеклование и стеклообразное состояние полимеров.
- •2.4. Механические свойства кристаллических полимеров.
- •2.5. Теории разрушения и долговечность полимеров.
- •2.6. Реология расплавов и растворов полимеров.
- •2.7. Особенности химических реакций в полимерах
- •2.8. Волокнообразующие полимеры и свойства волокон
- •Контрольные вопросы к главе 2.
- •Библиографический список
2.2. Релаксационные свойства полимеров.
Переход любой системы из неравновесного в равновесное состояние в результате теплового движения атомов и молекул называют релаксацией, при этом скорость приближения к равновесию пропорциональна отклонению системы от равновесия. К способам изучения релаксационных свойств полимеров относят релаксацию напряжения, ползучесть, кривые напряжение-деформация и многократные деформации.
При релаксации напряжения образец быстро деформируют на заданную величину и сохраняют в деформированном состоянии, измеряя зависимость напряжения от времени (рис.2.4а). В момент фиксации начальное напряжение соответствует состоянию, когда макромолекулярные клубки развернулись в процессе деформации, а узлы флуктуационной сетки не успели распасться и перегруппироваться. Постепенно в напряженном образце происходит распад узлов флуктуационной сетки, а макромолекулярные клубки все более свертываются. Когда напряжение в образце упадет до нуля, структура его становится такой же, как и до растяжения (кривая 1). Поскольку деформация растяжения не изменилась, сворачивание клубков и перегруппировка узлов флуктуационной сетки сопровождались процессом течения макромолекул. После освобождения из зажимов динамометра такой образец не сократится, так как вся эластическая деформация в нем перешла в деформацию течения. Чем более полярен полимер, тем более пологой оказывается кривая релаксации и медленнее падает напряжение. Сетка химических связей сетчатых эластомеров практически не релаксирует. Напряжение релаксирует до тех пор, пока не сосредоточится на узлах химической сетки, достигнув равновесного значения, и не разгрузятся все узлы флуктуационной сетки (кривая 2). Химические связи препятствуют необратимому перемещению клубков молекул, но не мешают перемещению сегментов. Если образец освободить из зажимов динамометра, то он с течением времени полностью восстановит свои первоначальные размеры, и напряжение в нем упадет до нуля.
Рис.2.4. Релаксация напряжения в линейном (1) и сетчатом (2) эластомере (а), модель Максвелла (б) и релаксация напряжения в этой модели (в).
При ползучести образец быстро нагружают и следят за деформацией, которая усложняется все возрастающим напряжением в расчете на постоянно уменьшающуюся площадь поперечного сечения (рис.2.5а). Под действием приложенной нагрузки макромолекулярные клубки развертываются, а часть сегментов перемещается, ориентируясь в направлении действия силы, что приводит к смещению и клубков относительно друг друга (кривая 1). Таким образом, развиваются одновременно и обратимая (высокоэластическая), и необратимая (вязкотекучая) деформации. После разгрузки образец частично (на величину высокоэластической деформации) сократится за счет свертывания клубков макромолекул, но сохранит остаточную, вязкотекучую деформацию. В сетчатом эластомере ползучесть развивается до нагружения сетки химических связей, которые исключают взаимное перемещение макромолекул, Поэтому при ползучести образца резины не возникает необратимой деформации, а после разгрузки образец сокращается до первоначальных размеров (кривая 2).
Рис.2.5. Ползучесть в линейном (1) и сетчатом (2) полимерах (а) и кривая ползучести для модели Максвелла (б). Пунктиром обозначена часть кривых сокращения образца после прекращения действия силы; точкой обозначены переходы к линейному участку кривых.
Для снятия кривой напряжение-деформация образец помещают в динамометр, один из зажимов которого передает нагрузку на силоизмеритель и неподвижен, а другой перемещается с постоянной скоростью. Такой режим изучения релаксационных явлений более сложен по сравнению с релаксацией напряжения и ползучестью, но его широко применяют при определении механических свойств полимеров. На начальном участке кривой растяжения пространственно сшитого эластомера (область I) напряжение возрастает из-за сопротивления узлов флуктуационной сетки, не успевающих распадаться (рис.2.9а). При дальнейшем росте деформации напряжение растет медленнее (область II) из-за распада узлов флуктуационной сетки, облегчающего перемещение и ориентацию сегментов. При дальнейшей деформации (область III) напряжение растет за счет ориентации макромолекул, сопровождающейся у стереорегулярных каучуков кристаллизацией, до точки разрыва образца (1). При замене растяжения сокращением с той же скоростью перегруппировавшиеся узлы флуктуационной сетки не успевают восстановиться, и напряжение в образце будет меньше, чем при растяжении. Площадь под кривой напряжение-деформация является мерой работы деформации, которая в цикле растяжение-сокращение превращается в теплоту из-за внутреннего трения сегментов. Потери механической энергии (гистерезисные потери) измеряются площадью петли гистерезиса, образованной кривыми растяжения (1`) и сокращения (3), а само явление несовпадения кривых называется гистерезисом. Кривые нагрузки и разгрузки совпадают при очень большой скорости деформации (2), когда не успевают распадаться узлы флуктуационной сетки, деформация мала (хрупкое разрушение), или при медленной равновесной деформации (4). В этом случае при большой продолжительности процесса все изменения надмолекулярной структуры успевали восстановиться. Площадь петли гистерезиса уменьшается от цикла к циклу до предельной величины (рис.2.9б).
Рис.2.9. Зависимость напряжение-деформация для сетчатого эластомера (а) и уменьшение площади петли гистерезиса при повторении циклов деформирования (б): 1-стандартная скорость растяжения (I, II, III-области структурных изменений); 2- большая скорость растяжения; 3 и 1` -петля гистерезиса; 4-нагружение и разгрузка в равновесных условиях.
Многократные циклические деформации – наиболее сложный вид испытаний, который проводят в области линейной вязкоупругости, что позволяет менять в широких пределах скорость действия силы (частоту) при малой величине деформации. Для перемещения зажимов с образцами при циклическом режиме деформации используют электромагнитные приводы или кривошипные механизмы, обеспечивающие синусоидальное изменение напряжения и деформации.
