
- •Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Поволжский государственный университет телекоммуникаций и информатики»
- •Конспект лекций
- •Содержание конспекта лекций
- •Понятие информатики
- •Информация, ее представление и измерение Понятие и характерные черты информации
- •Преобразование сообщений
- •Рассмотрим более подробно преобразования одного сигнала в другой.
- •Преобразование д®н
- •Лекция 2 Меры информации
- •Объем информации V (объемный подход)
- •Комбинаторная мера
- •Двоичная логарифмическая мера
- •Вероятностная мера
- •Понятия бита, байта
- •Представление информации в эвм Кодирование информации
- •Представление символьной информации
- •Краткая информация о других системах кодирования.
- •Универсальная система кодирования текстовых данных
- •Лекция 3 Представление и обработка чисел в компьютере Системы счисления и коды, применяемые в вычислительной технике
- •Перевод из одной системы счисления в другую.
- •Двоичная система счисления (в)
- •Восьмеричная система счисления (о)
- •Шестнадцатиричная система счисления (h)
- •Информационно–логические основы построения эвм Формы представления чисел
- •Операции над двоично-десятичными числами в упакованном формате без учета знака
- •Лекция 4 Логические основы построения эвм
- •Лекция 5 Технические средства реализации информационных процессов Краткая история вычислительной техники
- •Классическая архитектура эвм
- •Магистрально-модульный принцип построения компьютера
- •Лекция 6 Программное обеспечение эвм
- •Операционные системы
- •Лекция 7 Модели решения функциональных и вычислительных задач
- •Что такое модель?
- •Классификация моделей. Материальные и информационные модели
- •1. Область использования
- •2. Учет фактора времени и области использования
- •3. Классификация по способу представления
- •Этапы моделирования
- •Алгоритмизация и основные этапы решения инженерных задач
- •Технология решения задач на компьютере Этапы решения задач на компьютере
- •Основы структурного программирования Алгоритмы
- •Базовые алгоритмические структуры
- •Линейные алгоритмы
- •Пример алгоритма линейной структуры.
- •Пример алгоритма ветвления.
- •Модульное программирование
- •Объектно-ориентированное программирование
- •Языки программирования, их классификация
- •Транслятор, компилятор, интерпретатор
- •Контрольные вопросы:
- •Лекция 8 Технология обработки текстовой информации
- •Возможности текстовых процессоров
- •Форматирование текста Приемы форматирования текста
- •Задание параметров шрифта
- •Форматирование абзацев
- •Выделение текста с помощью мыши
- •Создание таблиц и работа с таблицами в текстовом редакторе
- •Структура таблицы
- •Создание оглавления средствами текстового процессора
- •Использование стилей заголовков
- •Лекция 9 Технология обработки графической информации Кодирование графической информации
- •Цветовые модели.
- •Векторное и фрактальное изображения.
- •Преобразование файлов из одного формата в другой
- •Преобразование файлов из растрового формата в векторный
- •Преобразование файлов одного векторного формата в другой
- •Лекция 10 Технология обработки числовой информации, табличный процессор
- •Мультимедиа технологии. Компьютерные презентации с использованием мультимедиа технологии
- •Начало работы
- •6.2. Создание мультимедийных презентаций. Настройка параметров демонстрации п Рис. 1. Выбор разметки слайда ервая презентация
- •Оформление слайда
- •Дополнительные объекты
- •Анимация
- •Показ слайдов
- •Лекция 11 Сжатие информации
- •1 Основные понятия баз данных
- •Определение основных терминов
- •Основные требования, предъявляемые к банкам данных
- •Компоненты банка данных
- •Пользователи бд и субд
- •2 Классификация бд
- •Классификация баз данных
- •Классификация субд
- •Основные функции субд
- •1. Непосредственное управление данными во внешней памяти
- •2. Управление буферами оперативной памяти
- •3. Управление транзакциями
- •4. Журнализация
- •5. Поддержка языков бд
- •Функциональные возможности субд
- •3 Проектирование баз данных Подходы к проектированию
- •Архитектура субд
- •Методология проектирования баз данных
- •Основные этапы разработки бд
- •4 Модели организации баз данных
- •Иерархическая модель базы данных
- •Сетевая модель базы данных.
- •Операции над данными в сетевой модели бд.
- •Достоинства и недостатки ранних субд
- •Объектно-ориентированные субд
- •Объектно-реляционные субд
- •5 Реляционный подход к построению инфологической модели Реляционная модель данных
- •Понятие информационного объекта
- •Нормализация отношений
- •Свойства отношений.
- •Простые и составные ключи
- •6. Работа с субд ms Access Объекты Microsoft Access.
- •Работа с таблицами
- •Создание межтабличных связей
- •Работа с запросами
- •Запросы и фильтры
- •Работа с формами
- •Работа с отчётами
- •Программные системы в научных исследованиях, использование пакетов математических и инженерных расчетов Система MathCad (Mathematical Computer Aided Design)
- •MathCad-документ и его структура
- •Элементарные математические встроенные функции
- •Функции, определяемые пользователем
- •Условия и функция if
- •Индексированные переменные и итерация
- •К ак выглядит
- •Аргументы:
- •Аргументы:
- •Аргументы:
Объектно-реляционные субд
Разница между объектно-реляционными и объектными СУБД: первые являют собой надстройку над реляционной схемой, вторые же изначально объектно-ориентированы. Главная особенность и отличие объектно-реляционных, как и объектных, СУБД от реляционных заключается в том, что О(Р)СУБД интегрированы с Объектно-Ориентированным (OO) языком программирования, внутренним или внешним как C++, Java. Характерные свойства OРСУБД - 1) комплексные данные, 2) наследование типа, и 3) объектное поведение.
Комплексные данные могут быть реализованы через постоянно-хранимые объекты (persistent objects). Создание комплексных данных в большинстве существующих ОРСУБД основано на предварительном определении схемы через определяемый пользователем тип (UDT - user-defined type). Используются также встроенные конструкторы составных типов, например массив (ARRAY).
Иерархия структурных комплексных данных предлагает дополнительное свойство, наследование типа. То есть структурный тип может иметь подтипы, которые используют все его атрибуты и содержат дополнительные атрибуты, специфицированные в подтипе.
Объектное поведение закладывается через описание программных объектов. Такие объекты должны быть сохраняемыми и переносимыми для обработки в базе данных, поэтому они называются обычно как постоянные (или долговременные) объекты. Внутри базы данных все отношения с постоянным программным объектом есть отношения с его объектным идентификатором (OID).
Объектно-реляционными СУБД являются, к примеру, широко известные Oracle Database, Microsoft SQL Server 2005, PostgreSQL, а также Sav Zigzag, IBM Cloudscape,
5 Реляционный подход к построению инфологической модели Реляционная модель данных
Реляционная модель есть представление БД в виде совокупности упорядоченных нормализованных отношений.
Для реляционных отношений характерны следующие особенности.
Любой тип записи содержит только простые (по структуре) элементы данных.
Порядок кортежей в таблице несуществен.
Упорядочение значащих атрибутов в кортеже должно соответствовать упорядочению атрибутов в реляционном отношении.
Любое отношение должно содержать один атрибут или более, которые вместе составляют уникальный первичный ключ.
Если между двумя реляционными отношениями существует зависимость, то одно отношение является исходным, второе –подчиненным.
Чтобы между двумя реляционными отношениями существовала зависимость, атрибут, служащие первичным ключом в исходном отношении, должны также присутствовать в подчиненном отношении.
Пример 5.1. Представим БД «Учебный процесс»в виде реляционной модели (табл. 5.1).
Таблица 5.1.
а) Отношение ГРУППА
Индекс ИГ |
Название группы НГ |
Количество ответов КОЛ |
Проходной балл ПБАЛЛ |
1 2 3 |
А1 А2 А3 |
16 28 18 |
4,3 4,0 4,3 |
б) Отношение СТУДЕНТ
Номер зачетной книжки НЗ |
ИГ |
Фамилия, и.о СФИО |
Год рождения |
Понятие реляционный (англ. relation — отношение) связано с разработками известного американского специалиста в области систем баз данных Е. Кодда.
Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.
Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:
• каждый элемент таблицы — один элемент данных;
• все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;
• каждый столбец имеет уникальное имя;
• одинаковые строки в таблице отсутствуют;
• порядок следования строк и столбцов может быть произвольным.
Пример 1. Реляционной таблицей можно представить информацию о студентах, обучающихся в вузе (рисунок 5.1).
№ личного дела |
Фамилия |
Имя |
Отчество |
Дата рождения |
Группа |
16493 |
Сергеев |
Петр |
Михайлович |
01.01.76 |
ИСТ 11 |
16593 |
Петрова |
Анна |
Владимировна |
15.03.75 |
СК 12 |
16693 |
Анохин |
Андрей |
Борисович |
14.04.76 |
ИСТ 11 |
Рисунок 5.1. Пример реляционной таблицы