
- •Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Поволжский государственный университет телекоммуникаций и информатики»
- •Конспект лекций
- •Содержание конспекта лекций
- •Понятие информатики
- •Информация, ее представление и измерение Понятие и характерные черты информации
- •Преобразование сообщений
- •Рассмотрим более подробно преобразования одного сигнала в другой.
- •Преобразование д®н
- •Лекция 2 Меры информации
- •Объем информации V (объемный подход)
- •Комбинаторная мера
- •Двоичная логарифмическая мера
- •Вероятностная мера
- •Понятия бита, байта
- •Представление информации в эвм Кодирование информации
- •Представление символьной информации
- •Краткая информация о других системах кодирования.
- •Универсальная система кодирования текстовых данных
- •Лекция 3 Представление и обработка чисел в компьютере Системы счисления и коды, применяемые в вычислительной технике
- •Перевод из одной системы счисления в другую.
- •Двоичная система счисления (в)
- •Восьмеричная система счисления (о)
- •Шестнадцатиричная система счисления (h)
- •Информационно–логические основы построения эвм Формы представления чисел
- •Операции над двоично-десятичными числами в упакованном формате без учета знака
- •Лекция 4 Логические основы построения эвм
- •Лекция 5 Технические средства реализации информационных процессов Краткая история вычислительной техники
- •Классическая архитектура эвм
- •Магистрально-модульный принцип построения компьютера
- •Лекция 6 Программное обеспечение эвм
- •Операционные системы
- •Лекция 7 Модели решения функциональных и вычислительных задач
- •Что такое модель?
- •Классификация моделей. Материальные и информационные модели
- •1. Область использования
- •2. Учет фактора времени и области использования
- •3. Классификация по способу представления
- •Этапы моделирования
- •Алгоритмизация и основные этапы решения инженерных задач
- •Технология решения задач на компьютере Этапы решения задач на компьютере
- •Основы структурного программирования Алгоритмы
- •Базовые алгоритмические структуры
- •Линейные алгоритмы
- •Пример алгоритма линейной структуры.
- •Пример алгоритма ветвления.
- •Модульное программирование
- •Объектно-ориентированное программирование
- •Языки программирования, их классификация
- •Транслятор, компилятор, интерпретатор
- •Контрольные вопросы:
- •Лекция 8 Технология обработки текстовой информации
- •Возможности текстовых процессоров
- •Форматирование текста Приемы форматирования текста
- •Задание параметров шрифта
- •Форматирование абзацев
- •Выделение текста с помощью мыши
- •Создание таблиц и работа с таблицами в текстовом редакторе
- •Структура таблицы
- •Создание оглавления средствами текстового процессора
- •Использование стилей заголовков
- •Лекция 9 Технология обработки графической информации Кодирование графической информации
- •Цветовые модели.
- •Векторное и фрактальное изображения.
- •Преобразование файлов из одного формата в другой
- •Преобразование файлов из растрового формата в векторный
- •Преобразование файлов одного векторного формата в другой
- •Лекция 10 Технология обработки числовой информации, табличный процессор
- •Мультимедиа технологии. Компьютерные презентации с использованием мультимедиа технологии
- •Начало работы
- •6.2. Создание мультимедийных презентаций. Настройка параметров демонстрации п Рис. 1. Выбор разметки слайда ервая презентация
- •Оформление слайда
- •Дополнительные объекты
- •Анимация
- •Показ слайдов
- •Лекция 11 Сжатие информации
- •1 Основные понятия баз данных
- •Определение основных терминов
- •Основные требования, предъявляемые к банкам данных
- •Компоненты банка данных
- •Пользователи бд и субд
- •2 Классификация бд
- •Классификация баз данных
- •Классификация субд
- •Основные функции субд
- •1. Непосредственное управление данными во внешней памяти
- •2. Управление буферами оперативной памяти
- •3. Управление транзакциями
- •4. Журнализация
- •5. Поддержка языков бд
- •Функциональные возможности субд
- •3 Проектирование баз данных Подходы к проектированию
- •Архитектура субд
- •Методология проектирования баз данных
- •Основные этапы разработки бд
- •4 Модели организации баз данных
- •Иерархическая модель базы данных
- •Сетевая модель базы данных.
- •Операции над данными в сетевой модели бд.
- •Достоинства и недостатки ранних субд
- •Объектно-ориентированные субд
- •Объектно-реляционные субд
- •5 Реляционный подход к построению инфологической модели Реляционная модель данных
- •Понятие информационного объекта
- •Нормализация отношений
- •Свойства отношений.
- •Простые и составные ключи
- •6. Работа с субд ms Access Объекты Microsoft Access.
- •Работа с таблицами
- •Создание межтабличных связей
- •Работа с запросами
- •Запросы и фильтры
- •Работа с формами
- •Работа с отчётами
- •Программные системы в научных исследованиях, использование пакетов математических и инженерных расчетов Система MathCad (Mathematical Computer Aided Design)
- •MathCad-документ и его структура
- •Элементарные математические встроенные функции
- •Функции, определяемые пользователем
- •Условия и функция if
- •Индексированные переменные и итерация
- •К ак выглядит
- •Аргументы:
- •Аргументы:
- •Аргументы:
Преобразование сообщений
Поскольку имеется два типа преобразований, то возможно четыре варианта преобразований:
Рассмотрим более подробно преобразования одного сигнала в другой.
Преобразование Н1®Н2 (Непрерывный 1 в Непрерывный 2)
Примеры:
а) микрофон: звук преобразовывается в электрические сигналы
б) телекамера: изображение и звук – в электрические сигналы
При таком преобразовании из-за помех, образуемых самим техническим устройством, всегда происходит потеря информации.
Преобразование Д1®Д2 (Дискретный 1 в Дискретный 2)
Это преобразование связано с переходом при представлении сигналов к другому алфавиту. Эта операция называется перекодировка. Шифрование текста, "пляшущие человечки", транслитерация - русские слова английскими буквами и т.п.
Преобразование Н®Д (непрерывный в дискретный)
С математической точки зрения переход от аналоговой формы сигнала к дискретной означает замену описывающей его непрерывной функции Z(t) на некотором временном интервале [t1,t2] конечным множеством {zi,ti}, i=0,..n, где n – количество точек разбиения временного интервала.
Это преобразование называется дискретизацией непрерывного сигнала и осуществляется посредством следующих процедур:
а) развертки по времени
б) квантования по величине
Развертка по времени осуществляется за счет того, что наблюдение за Z(t) проводится не непрерывно, а только в определенные моменты времени с интервалом:
Квантование по величине – это отображение значения Z(t) в конечное множество чисел, кратных так называемому шагу квантования .
Практически совместное выполнение этих операций равносильно:
1) нанесению масштабной сетки на график Z(t) в соответствии с величинами и
2) выбора в качестве пар значений {zi,ti} узлов сетки, расположенных наиболее близко к z(ti). Полученное множество называется дискретным представлением исходной непрерывной функции.
Очевидно, что чем меньше n, тем меньше узлов, но и меньше точность. То есть может происходить потеря информации. Казалось бы, что увеличивая n можно неограниченно повысить точность, но полностью избежать потерь это все-таки не позволит, так как n –конечная величина. Как же избежать потерь информации. Ответом на этот вопрос является следующая теорема, которую мы примем без доказательств:
-
Теорема отсчетов:
(Котельникова, 1933)
Непрерывный сигнал можно полностью отобразить и точно воссоздать по последовательности измерений или отсчетов величины этого сигнала через одинаковые интервалы времени, меньшие или равные половине периода максимальной частоты, имеющейся в сигнале.
Замечание:
это для таких линий связи, где имеются только колебательные или волновые процессы. Но поскольку работа большинства практических устройств основана именно на этих процессах, то это не является ограничением.
Преобразование д®н
Теорема отсчетов дает ответ и на вопрос о возможности проведения такого преобразования без потери информации. Более подробно мы не будем на нем останавливаться.
ВЫВОД: во всех видах преобразования сообщений, где имеется Д-сообщения возможно преобразование без потери информации.
Другие достоинства дискретно формы информации:
1) высокая помехоустойчивость
2) простота и надежность устройств по обработке информации
3) точность обработки информации
4) универсальность устройств.
Последнее свойство является следствием того обстоятельства, что любые дискретные сообщения, составленные в совершенно различных алфавитах можно привести к некоторому единому алфавиту, который принять за БАЗОВЫЙ (за счет Д®Д). А далее можно в этом базовом алфавите представлять всю дискретную информацию. Следовательно, устройство, работающее с информацией в этом базовом алфавите универсально, так как может быть использовано для любой дискретной информации. Такой базовый алфавит – двоичный, а устройство – компьютер.
вывод: Везде далее можем говорить только о дискретной информации, а для ее представления использовать фиксированный алфавит. При этом не надо рассматривать ФИЗИЧЕСКИЕ ОСОБЕННОСТИ передачи и представления, то есть характер процессов и виды сигналов. Полученные результаты будут справедливы для любой дискретной информации независимо от реализации сообщения, с которым она связана.
Подводя итог [Могилев А.В, Пак Н.И, Хеннер Е.К. Информатика] относительно понятия ИНФОРМАЦИЯ, можно сказать, что информацию нельзя считать лишь техническим термином, это фундаментальная философская категория, которой присущи такие свойства как запоминаемость, передаваемость, преобразуемость, воспроизводимость, стираемость. Можно дать следующее определение:
Информация – специфический атрибут реального мира, представляющий собой его объективное отражение в виде совокупности сигналов и проявляющийся при взаимодействии с «приемником» информации, позволяющим выделять, регистрировать эти сигналы из окружающего мира и по тому или иному критерию их идентифицировать. Таким образом:
информация объективна, так как это свойства материи – отражение
информация проявляется в виде сигналов и лишь при взаимодействии объектов.
одна и та же информация различными получателями может быть интерпретирована по-разному.
Информация имеет определенные функции и этапы обращения в обществе. Основными из них являются:
познавательная, цель которой — получение новой информации. Функция реализуется в основном через такие этапы обращения информации, как:
— ее синтез (производство),
— представление,
— хранение (передача во времени),
— восприятие (потребление);
коммуникативная — функция общения людей, реализуемая через такие этапы обращения информации, как:
— передача (в пространстве),
— распределение;
управленческая, цель которой — формирование целесообразного поведения управляемой системы, получающей информацию. Эта функция информации неразрывно связана с познавательной и коммуникативной и реализуется через все основные этапы обращения, включая обработку.
Без информации не может существовать жизнь в любой форме и не могут функционировать созданные человеком любые информационные системы. Без нее биологические и технические системы представляют груду химических элементов. Общение, коммуникации, обмен информацией присущи всем живым существам, но в особой степени — человеку. Будучи аккумулированной и обработанной с определенных позиций, информация дает новые сведения, приводит к новому знанию. Получение информации из окружающего мира, ее анализ и генерирование составляют одну из основных функций человека, отличающую его от остального живого мира.
Контрольные вопросы:
Основные черты информационного общества
Информационные революции в обществе. Три этапа информационной революции
Информатика – понятие, объекты приложения, предмет изучения, составные части, место среди других наук.
Основные понятия информатики – информация, аспекты понятия информации, материальный носитель, сигнал, сообщение, данные, информационный процесс, источник сообщения, получатель сообщения, виды сигналов.
Сигналы: Непрерывный по уровню и во времени сигнал Х; Дискретный по уровню и непрерывный по времени сигнал Х; Непрерывный по уровню и дискретный по времени сигнал Х; Дискретный по уровню и по времени сигнал Х
Теорема отсчетов Котельникова
Достоинства дискретной формы: - высокая помехоустойчивость - простота и надежность устройств по обработке информации - точность обработки информации - универсальность устройств
Основные понятия информатики – объект: виды, признаки, характеристики, поведение.
Основные понятия информатики – система: компоненты, свойства, понятие информационной системы.