- •Лабораторная работа 1 Исследование статистики ошибок в каналах связи
- •1. Краткие теоретические сведения.
- •1.2 Модель источника ошибок
- •Контрольные вопросы.
- •Лабораторная работа 2
- •1. Краткие теоретические сведения
- •1.1. Постановка задачи
- •1.2. Простые гипотезы
- •1.3. Радиолокация ( )
- •1.4. Двоичный симметричный канал
- •1.5. Вероятность ошибок при передаче сигнала по каналу с гауссовым шумом
- •2. Помехоустойчивый прием
- •2.1. Прием импульсного сигнала на фоне помех
- •2.2. Виртуальный лабораторный стенд для исследования статистических характеристик передачи импульсных сигналов по каналу с шумами
- •3. Задания к работе
- •3.1. Определение вероятности правильного приема импульса
- •3.2. Определение интегрального распределения вероятности пропуска импульса
- •3.3. Определение интегрального распределения вероятности ложного приема импульса
- •3. Контрольные вопросы
- •Лабораторная работа № 3 Изучение краевых искажений в дискретном канале
- •1. Краткие теоретические сведения.
- •Дроблением значащих интервалов называется однократное или многократное изменение значащих позиций внутри значащего интервала.
- •2. Ход выполнения работы
- •2.1. Задание
- •3. Содержание отчета
- •4. Контрольные вопросы
- •Лабораторная работа №4 Эффективное кодирование сообщений. Коды Шеннона – Фано, Хаффмена
- •1. Краткие теоретические сведения
- •1.1 Основные понятия и приемы.
- •2. Обработка полученных результатов
- •3. Контрольные вопросы
- •1. Краткие теоретические сведения
- •1.1. Оптимальный прием дискретных радиосигналов
- •1.2.Амплитудная модуляция с пассивной паузой.
- •1.3. Частотная двоичная модуляция
- •1.4. Относительная фазовая модуляция
- •2. Исследование модулированных сигналов
- •2.1. Порядок выполнения лабораторной работы
- •1. Краткие теоретические сведения
- •1.1. Виды синхронизации
- •1.2. Синхронизация приемника
- •1.3. Частотная и фазовая синхронизация
- •1.4. Символьная синхронизация
- •1.5. Разомкнутые символьные синхронизаторы
- •1.6. Замкнутые символьные синхронизаторы
- •1.7. Ошибки символьной синхронизации и вероятность символьной ошибки
- •2. Порядок выполнения работы
- •2.1. Результаты моделирования.
- •2.2. Восстановление фазы несущей
- •2.3. Результаты моделирования
- •3. Контрольные вопросы
- •Лабораторная работа № 7
- •Корректирующие коды Хемминга.
- •Моделирование кодов Хемминга в среде Матлаб
- •Ход выполнения работы.
- •4. Содержание отчета
- •1. Краткие теоретические сведения
- •1.1. Представление сверточного кода порождающими многочленами
- •1.2. Порождающая матрица сверточного кода
- •1.3. Кодовое дерево сверточного кода и решетчатая диаграмма
- •1.4. Свободное расстояние. Спектр
- •1.5. Катастрофические кодеры
- •2. Методы декодирования сверточных кодов
- •2.1. Метод порогового декодирования
- •2.2. Метод последовательного декодирования
- •2.3. Метод декодирования по алгоритму Витерби
- •2.3.1. Декодирование в случае отсутствия ошибок при приеме
- •2.3.2. Декодирование в случае наличия ошибок при приеме.
- •2.3.3. Схемное построение декодера Витерби
- •3. Моделирование сверточных кодов в среде Матлаб
- •4. Порядок выполнения работы
- •4. Литература
1.6. Замкнутые символьные синхронизаторы
Основным недостатком разомкнутых символьных синхронизаторов является наличие неустранимой ошибки сопровождения с ненулевым средним. Эту ошибку можно снизить при больших отношениях сигнал/шум, но поскольку форма сигнала синхронизации зависит непосредственно от поступающего сигнала, устранить ошибку не удастся никогда.
Замкнутые символьные синхронизаторы сравнивают входной сигнал с локально генерируемым с последующей синхронизацией локального сигнала с переходами во входном сигнале. По сути, процедура ничем не отличается от используемой в разомкнутых синхронизаторах.
Среди наиболее популярных замкнутых символьных синхронизаторов можно выделить синхронизатор с опережающим и запаздывающим стробированием" (early/late-gate synchronizer). Пример такого синхронизатора схематически изображен на рис. 4. Его работа заключается в выполнении двух отдельных интегрирований энергии входного сигнала по двум различным промежуткам символьного интервала длительностью (Т-d) секунд. Первое интегрирование (опережающее) начинается в момент, определенный как начало периода передачи символа (условно — момент времени 0), и заканчивается через (T-d) секунд. Второе интегрирование (запаздывающее) начинается с задержкой на d секунд и заканчивается в конце периода передачи символа (условно — момент времени Т). Разность абсолютных значений выходов описанных интеграторов у1 и у2 является мерой ошибки синхронизации символов приемника и может подаваться обратно для последующей коррекции приема.
Рис.4. Синхронизатор с опережающим и запаздывающим стробированием
Работа синхронизатора с опережающим и запаздывающим стробированием представлена на рис.5. При идеальной синхронизации (рис. 5, а) показано, что оба периода стробирования попадают в интервал передачи символа. В этом случае оба интегратора получат одинаковый объем энергии сигнала и разность соответствующих сигналов (сигнал рассогласования е на рис. 4) будет равна нулю. Следовательно, если устройство синхронизировано, оно стабильно; нет тенденции к самопроизвольному выходу из синхронизации. На рис.5, б показан пример для приемника, генератор тактовых импульсов которого функционирует с опережением по отношению к входному сигналу. В данном случае начало интервала опережающего интегрирования попадает на предыдущий интервал передачи бита, тогда как запаздывающее интегрирование по-прежнему выполняется в пределах текущего символа. При запаздывающем интегрировании энергия накапливается за интервал времени (T-d), как и в случае, изображенном на рис.5, а; но опережающее интегрирование накапливает энергию всего за время [{Т - d) - 2], где — часть интервала опережающего интегрирования, приходящаяся на предыдущий интервал передачи бита. Следовательно, для этого случая сигнал рассогласования будет равен е = -2, что приведет к снижению входного напряжения ГУН на рис.4. Это, в свою очередь, приведет к снижению выходной частоты ГУН и замедлит отсчет времени приемника для согласования с входными сигналами. Используя рис.5 как образец, можно видеть, что если таймер приемника опаздывает, объемы энергии, накопленные при опережающем и запаздывающем интегрировании, будут обратные к полученным ранее и, соответственно, поменяется знак сигнала рассогласования. Таким образом, запаздывание таймера приемника приведет к увеличению напряжения ГУН, что вызовет увеличение выходной частоты генератора и приближение скорости таймера приемника к скорости входного сигнала.
Рис.5. Символьная синхронизация: а) точная синхронизация приемника;
б) синхронизация с опережением
В примере, проиллюстрированном на рис.5, неявно подразумевалось, что до и после рассматриваемого символа происходит изменение информационного состояния. Если переходов нет, можно видеть, что опережающее и запаздывающее интегрирование приведет к одинаковым результатам. Следовательно, если не происходит изменения информационного состояния, сигнал рассогласования не генерируется. Это всегда следует иметь в виду при использовании любых символьных синхронизаторов. Вернемся к рис.4. Создать два абсолютно одинаковых интегратора невозможно. Следовательно, сигналы из двух ветвей контура будут сдвинуты относительно друг друга, даже если теоретически они должны быть идентичны. Данный сдвиг будет небольшим для качественно спроектированных интеграторов, но он приведет к постепенному уходу от синхронизации при наличии продолжительных последовательностей одинаковых информационных символов. Во избежание этого можно либо, что, вероятно, наиболее очевидно, форматировать данные так, чтобы гарантированно не было достаточно длительных интервалов без перехода, либо модифицировать структуру схемы таким образом, чтобы она содержала один интегратор. Примером структур такого типа является контур сглаживания.
Еще один момент, связанный с проектированием контура, — это интервалы интегрирования. В примере, приведенном на рис.5, интегрирование охватывает примерно три четверти периода передачи символа. В действительности величина этого интервала может быть от половины до практически всего периода передачи символа. Почему не меньше половины? Компромисс достигается между объемом проинтегрированного шума и интерференцией в стробе, с одной стороны, и длительностью сигнала, с другой. Как было справедливо для нелинейной модели контуров фазовой автоподстройки частоты, схемы этого типа трудно анализировать; определение производительности обычно выполняется с помощью компьютерного моделирования. Особенно это актуально для перекрывающихся интервалов интегрирования, подобных показанным на рис. 5, поскольку выборки шума в двух стробах будут коррелировать. Гарднер (Gardner) [5] показал, что для нормированного входного сигнала в 1 В, аддитивного белого гауссового шума, случайной последовательности данных (вероятность перехода -±-), опережающего и запаздывающего интегрирования, продолжительностью половина интервала передачи бита, и для больших отношений сигнал/шум в контуре относительное случайное смещение синхронизации приблизительно описывается следующим выражением.
(8)
Здесь N0 — (нормированная) спектральная плотность мощности, Т — интервал передачи символа, a BL — ширина полосы контура.
