
- •Моррис Коэн Эрнест Нагель Введение в логику и научный метод
- •Аннотация
- •Моррис Коэн; Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I Формальная логика Глава II Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •Эквивалентность сложных суждений
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •А) Умозаключение с добавленными детерминантами
- •Ь) Умозаключение посредством сложного понятия
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Непосредственное сведение
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Конец ознакомительного фрагмента.
§ 3. Строго разделительный силлогизм
Читатель может возразить: «Умозаключение, которое вы обозначили как необоснованное, зачастую рассматривается как раз в качестве обоснованного. Допустим, вы точно не знаете месяц, в котором родился Шекспир, но при этом вы можете сделать утверждение: «Он родился в апреле или в мае». Затем вы можете узнать, что он родился все‑таки в апреле. Не выведете ли вы из этого, что Шекспир не родился в мае? и если да, то не нарушите ли вы собственное правило, согласно которому в разделительном силлогизме меньшая посылка должна отрицать один из дизъюнктов?»
Читатель совершенно прав. Однако является ли данный пример в действительности опровержением установленного нами правила? На поверку оказывается, что нет. Данное умозаключение является обоснованным только при подразумеваемой посылке, гласящей, что один из дизъюнктов исключает другого. Бо′льшая посылка в примере, приведенном читателем, будучи сформулированной в полном виде, будет выглядеть так: «Шекспир родился в апреле или в мае, и он не родился в апреле и одновременно в мае». Данное суждение является конъюнктивным, и та его часть, которая является посылкой в аргументе читателя, представляет конъюнкт, утверждающий строгую дизъюнкцию. Такие дизъюнктивные суждения зачастую понимаются без дополнительных объяснений и поэтому не выражаются в явной форме. Тем не менее, для прояснения посылок, входящих в аргумент, эти суждения следует проявить.
В этом смысле строго дизъюнктивные силлогизмы рекомендуется рассматривать отдельно. В них большей посылкой является строго дизъюнктивное суждение, а меньшей – простое категорическое суждение. Отыщем условия, необходимые для обоснованности такого силлогизма.
Допустим, нам известна истинность следующего: «Неверно, что мои часы идут точно» и «Поведение всех механизмов подвержено воздействию климата». Утверждение истинности строго дизъюнктивного суждения означает утверждение того, что, по крайней мере, один из дизъюнктов является ложным. Следовательно, если мы утверждаем суждение «поведение всех механизмов подвержено воздействию климата», мы также должны утверждать и суждение «мои часы не идут точно». Однако будет неверным утверждать, что если один из членов строгой дизъюнкции ложен, то другой истинен. Строго разделительный силлогизм является обоснованным, если в меньшей посылке утверждается один из дизъюнктов, а в заключении отрицается другой.
Схематическая форма данного аргумента такова: неверно, что одновременно А есть В и С есть D; А есть В; следовательно, С не есть D. Или: (p . q)′; p; ∴ q′. Считается, что данное умозаключение стоит в модусе «modus ponendo tollens», поскольку, утверждая (в меньшей посылке), мы отрицаем (в большей).
Теперь можно подытожить обоснованные и необоснованные умозаключения, которые мы рассмотрели в данной главе.
§ 4. Сведение смешанных силлогизмов
Некоторые из указанных выше принципов, несомненно, знакомы читателю. Читатель мог использовать их всю свою жизнь, не формулируя при этом в явной форме, но осуществляя при этом умозаключения именно с помощью этих принципов. Однако ни то, что мы с ними знакомы, ни то, что они, по сути, являются несложными, не умаляет их важности. Эти принципы являются основополагающими для всей логической теории. Они раз за разом возникают в любом исследовании, связанном с обоснованностью суждений, используемых для обоснования последующих суждений.
При этом эти принципы не являются независимыми друг от друга. Если читатель вспомнит эквивалентности, установленные между сложными суждениями, ему не составит труда свести аргумент, стоящий в одном модусе, к аргументу в любом другом модусе. Поэтому мы без лишних комментариев перечислим эквивалентности между четырьмя модусами в нижеследующей таблице.