
- •Моррис Коэн Эрнест Нагель Введение в логику и научный метод
- •Аннотация
- •Моррис Коэн; Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I Формальная логика Глава II Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •Эквивалентность сложных суждений
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •А) Умозаключение с добавленными детерминантами
- •Ь) Умозаключение посредством сложного понятия
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Непосредственное сведение
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Конец ознакомительного фрагмента.
Количество
Категорические суждения классифицируются по количеству и по качеству. В суждении «все бифштексы – сочные» нечто утверждается о каждом бифштексе, тогда как в суждении «некоторые бифштексы – жесткие» информация относится лишь к неопределенной части класса бифштексов. Суждения, в которых нечто предицируется всему классу, называются общими, а те, в которых нечто предицируется неопределенной части класса, называются частными. Частицы «все» и «некоторые» именуются знаками количества, поскольку они указывают на величину той части субъекта, относительно которой утверждается предикат. Различие между этими частицами проявляется более явно, если частицу «все» называть знаком определенного класса, а частицу «некоторые» – знаком неопределенной части класса. В обыденной речи знаки количества неясны. Так, суждение «некоторые профессора являются сатирическими», как правило, будет пониматься в том смысле, что некая часть, но не весь класс профессоров является сатирической. В данном случае «некоторые» означает «некоторые, но не все». С другой стороны, суждение «у некоторых читателей данной книги не возникнет трудностей в ее понимании» будет скорее понято, как утверждающее то, что некая часть читателей, не исключая и всего класса, не будет иметь трудностей в понимании книги. В данном случае «некоторые» означает «некоторые и, возможно, все». Мы избежим данной двусмысленности, договорившись, что в логике частица «некоторые» будет пониматься во втором смысле, т. е. как не исключающая всего класса.
Иная двусмысленность проявляется при употреблении слова «все». Иногда оно обозначает всех членов конечного и пронумерованного набора как в суждении «все книги на этой полке – философские». В других же ситуациях, как, например, в суждении «все люди смертны» «все» означает «все возможные» и не может без потери для изначального значения рассматриваться как относящееся лишь к ограниченному числу людей, которые, скажем, существуют сейчас или существовали когда‑либо. Данное различие имеет первостепенное значение, и мы столкнемся с ним при обсуждении индукции и дедукции. Много заблуждений происходит по причине неучтения данного различия.
Является ли суждение «Тайс была гетерой в Александрии» общим или частным? Читателю может показаться, что частным. Однако он будет не прав, т. к. в таком случае он будет использовать частицу «некоторые» в смысле, отличающемся от того, который применяется в классификации суждений. На основании определения общих суждений как суждений, в которых нечто утверждается обо всем субъекте, данное суждение следует считать общим. Мы считаем, что это было бы еще более очевидным, если бы вместо терминов «общее» и «частное» использовались бы термины «определенное» и «неопределенное». В традиционной логике, однако, такие суждения иногда называются единичными, поскольку в них мы утверждаем нечто относительно одного индивида. Согласно традиционному подходу, единичные суждения следует, тем не менее, классифицировать как общие. Данное заключение, однако, не может считаться удовлетворительным в свете более тонкого анализа. Даже люди, не имеющие предварительной подготовки, смутно чувствуют, что существует разница в форме между суждением «доктор Смит является человеком, внушающим доверие» и суждением «все медики являются людьми, внушающими доверие». Такое чувство расходится с позицией традиционной логики. Современная логика поддерживает данное чувство, ясно демонстрируя, что эти суждения на самом деле являются примерами различных логических форм. При этом для многих целей использование традиционной логики, приписывающей данным суждениям одинаковую структуру, является вполне допустимым.