
- •Моррис Коэн Эрнест Нагель Введение в логику и научный метод
- •Аннотация
- •Моррис Коэн; Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I Формальная логика Глава II Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •Эквивалентность сложных суждений
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •А) Умозаключение с добавленными детерминантами
- •Ь) Умозаключение посредством сложного понятия
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Непосредственное сведение
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Конец ознакомительного фрагмента.
Форма категорических суждений
Согласно традиционной логической теории, все суждения можно разложить на субъект, предикат и связку, как с точки зрения их содержания, так и с точки зрения их объема. С одной стороны, может показаться, что в суждении «все вишни являются сладкими» признак «являться сладким» относится к группе признаков, определяющих природу вишен. С другой стороны, данное суждение означает, что объекты, называемые вишнями, включены в денотацию термина «сладкий»1.
В традиционном подходе также выделяются и другие формы суждений, именуемые условными. Их обычно пытаются сводить к категорической форме. Ниже мы рассмотрим условные формы, равно как и прочие способы анализа суждений. На данном же этапе мы лишь отметим, что, согласно традиционному подходу, все суждения следует рассматривать в субъектно‑предикатной форме, и только в ней2.
Суждения, очевидным образом не выражающие субъектно‑предикатную форму, в таком случае должны быть изменены так, чтобы эта форма в них проявилась. Суждение «Германия проиграла войну» должно быть выражено как «Германия есть проигравшая в последней войне», где субъектом является «Германия», предикатом – «проигравшая в последней войне», а связкой, разумеется, «есть». При анализе суждения «десять есть больше пяти» «десять» будет субъектом, «число большее, чем пять» – предикатом, а «есть» – связкой3.
Вполне несложно выразить вербально в субъектно‑предикатной форме любое суждение. Однако такое вербальное отождествление зачастую скрывает фундаментальные логические различия. Основой критики традиционной логики со стороны современной явилось указание на то, что традиционный подход приписывает единую (категорическую) форму суждениям, существенно различающимся по форме.
Читателю может быть невдомек, в чем значимость подобного спора о подходах к анализу суждений. Ответ прост. Анализ суждений осуществляется с целью выявления того, какие выводы можно обоснованно сделать, исходя из тех или иных суждений. Следовательно, если имеет место множественность форм суждений, а любая форма или структура детерминирует обоснованность умозаключения, то соответствующее усовершенствование анализа суждений может позволить нам достигнуть более точного понимания области возможных умозаключений.
Еще одна причина важности анализа структуры суждений заключается в стремлении выработать некие стандартные или канонические способы демонстрации того, что мы хотим утверждать. Мы хотим отыскать некие канонические формулировки суждений определенного типа, с тем чтобы ускорить процесс вывода. Так, в элементарной алгебре крайне удобно записать квадратное уравнение 5х2 = Зх – 5 в стандартной форме: 5х2 – Зх + 5 = 0. Это удобно потому, что мы знаем корни общего квадратного уравнения в стандартной форме ах2 + Ьх + с = 0, и нам несложно отыскать численный ответ нашей задачи. Более того, если мы примем стандартную форму записи уравнений, нам будет гораздо легче сравнивать различные уравнения и усматривать их сходства. То же самое имеет место и в логике. Если мы один раз определим критерии обоснованности умозаключений, отталкивающихся от суждений, выраженных в стандартной форме, то проведение всех последующих умозаключений становится почти механическим.
При этом сведение к стандартной форме суждения, выраженного в определенной вербальной форме, следует осуществлять очень осторожно, чтобы ничего не упустить из его изначального значения. Так, например, довольно сложно поверить в то, что при сведении к стандартной форме строчки из стихотворения Китса сохраняются все оттенки смысла, содержавшиеся в ней изначально.