- •Таврический национальный университет им. В.И. Вернадского
- •Введение. Предмет химии
- •Лекции 1-2. Современное атомно-молекулярное учение. Основные понятия химии, законы стехиометрии
- •Методы определения молекулярных масс газообразных веществ
- •Методы определения атомных масс
- •2 Метод Дюлонга-Пти
- •Лекции 3-4. Основные положения квантово-механической теории строения атома
- •Принципы описания электронной оболочки многоэлектронного атома
- •Лекции 5-6. Периодический закон д.И. Менделеева в свете квантово-механических представлений
- •Структура периодической системы элементов: периоды, группы, подгруппы элементов
- •Закономерности изменения свойств элементов в периодах и подгруппах периодической системы
- •Элементы-аналоги. Виды аналогии в периодической системе элементов
- •Контракционная аналогия (шринк-аналогия)
- •Распространенность химических элементов
- •Лекции 9-10. Основы теории химической связи. Метод валентных связей
- •Основные положения метода валентных связей
- •Механизмы образования двухцентровой связи. Насыщаемость ковалентной связи
- •Кратность ковалентной связи
- •Делокализованные многоцентровые связи. Теория резонанса
- •Недостатки метода валентных связей
- •Лекция 11. Предсказание геометрической формы молекул. Метод Гиллеспи
- •Лекция 12. Метод молекулярных орбиталей
- •Лекция 13. Ионная связь Особенности ионной связи. Свойства ионных соединений
- •Типы кристаллических решеток ионных соединений. Ионные радиусы
- •Поляризация ионов
- •Лекции 14-15. Металлическая связью Водородная связь. Межмолекулярное взаимодействие. Агрегатное состояние вещества Металлическая связь. Зонная теория кристаллов
- •Межмолекулярное взаимодействие
- •Водородная связь
- •Лекции 16-19. Координационные соединения Основные положения координационной теории
- •Классификация координационных соединений
- •Номенклатура координационных соединений
- •Изомерия координационных соединений
- •Химическая связь в координационных соединениях Метод валентных связей
- •Теория кристаллического поля
- •Метод молекулярных орбиталей
- •Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
- •Теория химического процесса Предмет и основные понятия теории химических процессов
- •Лекции 20-21. Основы химической термодинамики Термодинамические функции. Внутренняя энергия и первый закон термодинамики. Энтальпия
- •Термохимия. Закон Гесса
- •Энтропия. Второй и третий законы термодинамики
- •Свободная энергия Гиббса. Направление химического процесса
- •Лекции 22–23. Химическая кинетика Предмет химической кинетики. Скорость химической реакции. Энергия активации
- •Факторы, влияющие на скорость химической реакции. Катализаторы и катализ
- •Кинетическая классификация реакций.Молекулярность и порядок реакции. Механизмы реакций
- •Некоторые типы многостадийных реакций
- •Химическое равновесие Обратимые и необратимые реакции. Состояние химического равновесия
- •Смещение химического равновесия
- •Растворы Лекция 24. Общая характеристика растворов. Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •1. Давление насыщенного пара над раствором.
- •2.Температуры замерзания и кипения растворов.
- •3. Осмос и осмотическое давление.
- •Лекции 25-26. Растворы электролитов Теория электролитической диссоциации (ионизации)
- •Теория растворов слабых электролитов. Степень ионизации слабых электролитов и методы ее определения
- •Равновесия в растворах слабых электролитов
- •6,5·10-4 Моль/л
- •Теория сильных электролитов
- •Обменные реакции в растворах электролитов. Типы обменных реакций в растворах электролитов
- •Буферные растворы
- •Общая характеристика окислительно-восстановительных реакций
- •Составление уравнений окислительно-восстановительных реакций
- •Лекции 31-32. Электродные потенциалы. Направление окислительно-восстановительных реакций. Гальванический элементы. Электролиз
- •Электролиз
- •Лекция 33. Коллоидные растворы Общая характеристика коллоидных растворов и методы их получения
- •Строение коллоидных частиц суспензоидов
- •Массовая доля - отношение массы растворенного вещества к массе раствора
- •Список рекомендуемой литературы
- •Оглавление
Общая характеристика окислительно-восстановительных реакций
Окислительно-восстановительными реакциями (ОВР) называются процессы, сопровождающиеся изменением степени окисления элементов. Степень окисления - это формальный заряд, рассчитанный в предположении, что электроны, участвующие в образовании химических связей, полностью смещены к партнеру с большей электроотрицательностью, т.е. все химические связи рассматриваются как ионные.
При определении степени окисления элементов необходимо соблюдать ряд правил:
1. Степень окисления элемента в простом веществе равна нулю, например, Na0, O02, S08.
2. Сумма степеней окисления элементов, входящих в состав молекулы (формульной единицы), равна нулю, например:
(+12
+ (+6) + (-2)4 = 0)
(+1 + (+5) +
(-2)3 = 0)
3. Сумма степеней окисления элементов, входящих в состав иона, равна его заряду, например:
(+5 + (-2)3
= -1)
Ряд элементов проявляет постоянную степень окисления в своих соединениях, что несколько облегчает задачу определения степеней окисления других элементов. Так, фтор во всех своих соединениях проявляет степень окисления -1, щелочные металлы +1, щелочноземельные металлы, а также магний и бериллий +2, бор и алюминий +3, кремний +4. Водород, связанный в бинарных соединениях с металлами (в гидридах), проявляет степень окисления -1, во всех остальных случаях +1. Кислород в подавляющем большинстве соединений имеет степень окисления -2, исключения составляют перекиси, например, Н2О-12 и соединения с фтором: О+12F2 и O+2F2. Атомы хлора, брома и иода проявляют в своих соединениях степень окисления -1, за исключением тех случаев, когда они связаны с кислородом или более активным галогеном, стоящим в подгруппе выше. Остальные элементы в разных соединениях могут проявлять разную степень окисления, например: H2S-2, S+4O2, S+6O3.
Поскольку для любой химической реакции алгебраическая сумма степеней окисления элементов для каждого вещества, участвующего во взаимодействии, и для реакции в целом равна нулю, ОВР являются двуединым процессом, при протекании которого происходит повышение степени окисления одних и понижение степени окисления других элементов.
Процесс, сопровождающийся повышением степени окисления элементов, называется процессом окисления; элемент, степень окисления которого в процессе реакции повышается, называется восстановителем.
Процесс, сопровождающийся понижением степени окисления элемента, называется восстановлением; элемент, степень окисления которого понижается, называется окислителем.
Формально ОВР можно рассматривать как реакции, сопровождающиеся переносом электронов от одних атомов или ионов к другим. При таком подходе процесс, идущий с присоединением электронов является процессом восстановления окислителя, т.е. элемента, электроны присоединяющего, а процесс, протекающий с потерей электронов, является процессом окисления восстановителя, т.е. элемента, электроны отдающего. Так, например, взаимодействие олова с хлором протекает с образованием хлорида олова(IV), содержащeго полярные связи Sn-Cl со смещением электронной плотности к атомам хлора, являющегося более электроотрицательным элементом, чем олово. Соответственно степени окисления олова и хлора в простых веществах равны нулю, а в продукте взаимодействия - +4 и –1. Следует отметить, что знак степени окисления записывают перед числом в отличие от знака заряда иона, который ставят после числа, например, Sn+4 и Sn4+.
Sn0 + 2Cl
= Sn+4Cl
Для этой реакции окислителем является хлор, а восстановителем - олово; процессы окисления и восстановления протекают по следующим уравнениям:
Sn0 - 4e- = Sn+4 (окисление)
Cl0 + 1e- = Cl-1 (восстановление)
Понятия "окисление" и "восстановление" распространяются также на ионы и на вещества, содержащие атомы, присоединяющие или отдающие электроны.
Различают четыре типа ОВР.
1. Межмолекулярные ОВР, при которых окислитель и восстановитель являются разными элементами, входящими в состав разных молекул, например, рассмотренная выше реакция.
2. Внутримолекулярные ОВР, в случае которых окислитель и восстановитель входят в состав одного и того же вещества. К этому типу реакций относятся реакции разложения, например,
2Hg+2O-2 = 2Hg0 + O02
3. Реакции диспропорционирования, в случае которых в качестве окислителя и восстановителя выступают атомы одного и того же элемента в одной и той же степени окисления, например,
3Cl + 6KOH = KCl+5O3 + 5KCl-1 + 3H2O
4. Реакции сопропорционирования, для которых окислителем и восстановителем являются атомы одного и того же элемента в разных степенях окисления, которые становятся одинаковыми в продуктах реакции, например,
KI+5O3 + 5KI-1 + 3H2SO4 = 3I2 + K2SO4 + 3H2O
