- •Таврический национальный университет им. В.И. Вернадского
- •Введение. Предмет химии
- •Лекции 1-2. Современное атомно-молекулярное учение. Основные понятия химии, законы стехиометрии
- •Методы определения молекулярных масс газообразных веществ
- •Методы определения атомных масс
- •2 Метод Дюлонга-Пти
- •Лекции 3-4. Основные положения квантово-механической теории строения атома
- •Принципы описания электронной оболочки многоэлектронного атома
- •Лекции 5-6. Периодический закон д.И. Менделеева в свете квантово-механических представлений
- •Структура периодической системы элементов: периоды, группы, подгруппы элементов
- •Закономерности изменения свойств элементов в периодах и подгруппах периодической системы
- •Элементы-аналоги. Виды аналогии в периодической системе элементов
- •Контракционная аналогия (шринк-аналогия)
- •Распространенность химических элементов
- •Лекции 9-10. Основы теории химической связи. Метод валентных связей
- •Основные положения метода валентных связей
- •Механизмы образования двухцентровой связи. Насыщаемость ковалентной связи
- •Кратность ковалентной связи
- •Делокализованные многоцентровые связи. Теория резонанса
- •Недостатки метода валентных связей
- •Лекция 11. Предсказание геометрической формы молекул. Метод Гиллеспи
- •Лекция 12. Метод молекулярных орбиталей
- •Лекция 13. Ионная связь Особенности ионной связи. Свойства ионных соединений
- •Типы кристаллических решеток ионных соединений. Ионные радиусы
- •Поляризация ионов
- •Лекции 14-15. Металлическая связью Водородная связь. Межмолекулярное взаимодействие. Агрегатное состояние вещества Металлическая связь. Зонная теория кристаллов
- •Межмолекулярное взаимодействие
- •Водородная связь
- •Лекции 16-19. Координационные соединения Основные положения координационной теории
- •Классификация координационных соединений
- •Номенклатура координационных соединений
- •Изомерия координационных соединений
- •Химическая связь в координационных соединениях Метод валентных связей
- •Теория кристаллического поля
- •Метод молекулярных орбиталей
- •Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
- •Теория химического процесса Предмет и основные понятия теории химических процессов
- •Лекции 20-21. Основы химической термодинамики Термодинамические функции. Внутренняя энергия и первый закон термодинамики. Энтальпия
- •Термохимия. Закон Гесса
- •Энтропия. Второй и третий законы термодинамики
- •Свободная энергия Гиббса. Направление химического процесса
- •Лекции 22–23. Химическая кинетика Предмет химической кинетики. Скорость химической реакции. Энергия активации
- •Факторы, влияющие на скорость химической реакции. Катализаторы и катализ
- •Кинетическая классификация реакций.Молекулярность и порядок реакции. Механизмы реакций
- •Некоторые типы многостадийных реакций
- •Химическое равновесие Обратимые и необратимые реакции. Состояние химического равновесия
- •Смещение химического равновесия
- •Растворы Лекция 24. Общая характеристика растворов. Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •1. Давление насыщенного пара над раствором.
- •2.Температуры замерзания и кипения растворов.
- •3. Осмос и осмотическое давление.
- •Лекции 25-26. Растворы электролитов Теория электролитической диссоциации (ионизации)
- •Теория растворов слабых электролитов. Степень ионизации слабых электролитов и методы ее определения
- •Равновесия в растворах слабых электролитов
- •6,5·10-4 Моль/л
- •Теория сильных электролитов
- •Обменные реакции в растворах электролитов. Типы обменных реакций в растворах электролитов
- •Буферные растворы
- •Общая характеристика окислительно-восстановительных реакций
- •Составление уравнений окислительно-восстановительных реакций
- •Лекции 31-32. Электродные потенциалы. Направление окислительно-восстановительных реакций. Гальванический элементы. Электролиз
- •Электролиз
- •Лекция 33. Коллоидные растворы Общая характеристика коллоидных растворов и методы их получения
- •Строение коллоидных частиц суспензоидов
- •Массовая доля - отношение массы растворенного вещества к массе раствора
- •Список рекомендуемой литературы
- •Оглавление
Химическое равновесие Обратимые и необратимые реакции. Состояние химического равновесия
Химические реакции могут быть подразделены на необратимые и обратимые. Необратимые реакции протекают в направлении превращения реагентов в продукты реакции до тех пор, пока хотя бы один из реагентов не прореагирует количественно. Примером необратимых процессов могут служить следующие реакции:
2KClO3 = 2KCl + 3O2,
Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O
Обратимые реакции способны протекать одновременно в двух противоположных направлениях; в случае таких процессов взаимодействие исходных веществ приводит к образованию продуктов реакции (прямая реакция), которые, способны взаимодействовать друг с другом с образованием исходных веществ (обратная реакция). К таким реакциям можно отнести взаимодействие азота с водородом:
N2 + 3H2 2NH3
Заметим, что многие реакции, кажущиеся необратимыми, фактически таковыми не являются. Например, реакция осаждения сульфата бария или реакция нейтрализации
Ba2+ + SO
=
BaSO4↓,
H+ + OH- = H2O
являются, строго говоря, обратимыми, так как сульфат бария в какой-то мере растворим, а вода, пусть крайне незначительно, но все же диссоциирует на ионы водорода и гидроксила. О таких реакциях говорят, что они практически необратимы.
Пусть в системе протекает обратимая гомогенная одностадийная реакция
aA + bB dD + eE
Кинетические уравнения, отвечающие этой реакции, имеют вид:
(прямая реакция),
(обратная реакция)
Если смешать некоторые количества веществ А и В, то в первый момент скорость прямой реакции будет максимальна, а скорость обратной реакции будет равна нулю, так как веществ D и Е в системе нет. По мере образования веществ D и Е скорость прямой реакции будет уменьшаться, а скорость обратной реакции - увеличиваться. В конце концов, скорость прямой реакции станет равна скорости обратной реакции, после чего изменение концентраций реагентов и продуктов реакции прекратится: в единицу времени будет образовываться столько молей D и Е, сколько молей этих веществ будет превращаться в А и В.
Состояние системы, в котором скорости прямой и обратной реакции равны, называется химическим равновесием.
Концентрации реагентов и продуктов реакции, при которых система находится в состоянии равновесия, называются равновесными концентрациями. Равновесные концентрации обычно обозначают, заключая формулу соответствующего соединения в квадратные скобки.
Если система находится в состоянии равновесия (v1=v2), то.
k1[A]a[B]b = k2[D]d[E]e,
откуда
Отношение констант скорости есть величина постоянная, не зависящая от концентрации. Эта величина называется константой равновесия
Таким образом, для
системы, находящейся в состоянии
равновесия, отношение произведения
концентраций продуктов реакции к
произведению концентраций реагентов
является постоянной величиной, называемой
константой равновесия. Константа
равновесия не зависит от концентраций,
но зависит от природы реагирующих
веществ и температуры. Заметим, что
любое равновесие может устанавливаться
при различных значениях равновесных
концентраций. Необходимо лишь, чтобы
выражение
равнялось константе равновесия вне
зависимости от того, чему равны величины
[A], [B], [D] и [E].
Если реакция протекает между газообразными веществами, то концентрации взаимодействующих веществ могут быть заменены парциальными давлениями газов, так как давление газа пропорционально его концентрации. В этом случае
Поскольку, согласно уравнению состояния идеального газа,
,
численные значения К и К′ будут различными.
Пусть реакция
А + 2В АВ2
протекает в две стадии
А + В
АВ;
AB + B
AB2;
Найдем произведение констант равновесия реакций:
= К
Произведение К1.К2 есть константа равновесия реакции К, рассчитанная в предположении, что эта реакция одностадийна. Таким образом, независимо от числа промежуточных стадий стехиометрические коэффициенты уравнения реакции входят в уравнение константы равновесия как показатели степени при соответствующих концентрациях. Так, реакция
N2 + 3H2 2NH3
явно не может быть одностадийной, однако для нее
Пусть вещества В и Е являются кристаллическими.
aA + bB(кр.) dD + eE(кр.)
Тогда скорости прямой и обратной реакции будут пропорциональны не концентрациям, а площадям поверхностей (S) веществ В и Е:
,
В состоянии равновесия площади поверхности SВ и SЕ будут постоянны и войдут в значение константы равновесия. Отсюда для гетерогенного процесса
Таким образом, уравнение закона действующих масс применимо и для гетерогенных процессов, но концентрации веществ, образующих индивидуальную фазу, в него не включаются. Например, для реакции
СаСО3(к) СаО(к) + СО2(г)
K = [CO2]
т.е. равновесие устанавливается тогда, когда концентрация (или прациальное давление) диоксида углерода достигает определенного значения.
Еще раз подчеркнем, что установление химического равновесия отнюдь не означает, что в системе прекращается протекание прямой и обратной реакций. Эти реакции продолжают протекать, но с одинаковой скоростью. Химическое равновесие, таким образом, является динамическим, т.е. подвижным.
Рассмотрим термодинамические условия установления состояния равновесия. Химическое равновесие всегда устанавливается самопроизвольно и, следовательно, является состоянием, наиболее устойчивым в данных условиях. Независимо от того, скорость какого процесса, прямого или обратного, преобладает в неравновесной системе, переход к равновесию сопровождается понижением свободной энергии Гиббса. Отсюда следует, что в состоянии равновесия энергия Гиббса принимает минимальное значение. Это значение G будет сохраняться, пока равновесие не будет нарушено. Отсюда следует, что пока система пребывает в состоянии равновесия, ΔG для нее равно нулю. Константа равновесия связана с изменением энергии Гиббса уравнением
,
где
- изменение энергии Гиббса при температуре
Т, стандартном давлении и концентрациях
веществ, участвующих во взаимодействии,
равных 1 моль/л.
