- •Таврический национальный университет им. В.И. Вернадского
- •Введение. Предмет химии
- •Лекции 1-2. Современное атомно-молекулярное учение. Основные понятия химии, законы стехиометрии
- •Методы определения молекулярных масс газообразных веществ
- •Методы определения атомных масс
- •2 Метод Дюлонга-Пти
- •Лекции 3-4. Основные положения квантово-механической теории строения атома
- •Принципы описания электронной оболочки многоэлектронного атома
- •Лекции 5-6. Периодический закон д.И. Менделеева в свете квантово-механических представлений
- •Структура периодической системы элементов: периоды, группы, подгруппы элементов
- •Закономерности изменения свойств элементов в периодах и подгруппах периодической системы
- •Элементы-аналоги. Виды аналогии в периодической системе элементов
- •Контракционная аналогия (шринк-аналогия)
- •Распространенность химических элементов
- •Лекции 9-10. Основы теории химической связи. Метод валентных связей
- •Основные положения метода валентных связей
- •Механизмы образования двухцентровой связи. Насыщаемость ковалентной связи
- •Кратность ковалентной связи
- •Делокализованные многоцентровые связи. Теория резонанса
- •Недостатки метода валентных связей
- •Лекция 11. Предсказание геометрической формы молекул. Метод Гиллеспи
- •Лекция 12. Метод молекулярных орбиталей
- •Лекция 13. Ионная связь Особенности ионной связи. Свойства ионных соединений
- •Типы кристаллических решеток ионных соединений. Ионные радиусы
- •Поляризация ионов
- •Лекции 14-15. Металлическая связью Водородная связь. Межмолекулярное взаимодействие. Агрегатное состояние вещества Металлическая связь. Зонная теория кристаллов
- •Межмолекулярное взаимодействие
- •Водородная связь
- •Лекции 16-19. Координационные соединения Основные положения координационной теории
- •Классификация координационных соединений
- •Номенклатура координационных соединений
- •Изомерия координационных соединений
- •Химическая связь в координационных соединениях Метод валентных связей
- •Теория кристаллического поля
- •Метод молекулярных орбиталей
- •Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
- •Теория химического процесса Предмет и основные понятия теории химических процессов
- •Лекции 20-21. Основы химической термодинамики Термодинамические функции. Внутренняя энергия и первый закон термодинамики. Энтальпия
- •Термохимия. Закон Гесса
- •Энтропия. Второй и третий законы термодинамики
- •Свободная энергия Гиббса. Направление химического процесса
- •Лекции 22–23. Химическая кинетика Предмет химической кинетики. Скорость химической реакции. Энергия активации
- •Факторы, влияющие на скорость химической реакции. Катализаторы и катализ
- •Кинетическая классификация реакций.Молекулярность и порядок реакции. Механизмы реакций
- •Некоторые типы многостадийных реакций
- •Химическое равновесие Обратимые и необратимые реакции. Состояние химического равновесия
- •Смещение химического равновесия
- •Растворы Лекция 24. Общая характеристика растворов. Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •1. Давление насыщенного пара над раствором.
- •2.Температуры замерзания и кипения растворов.
- •3. Осмос и осмотическое давление.
- •Лекции 25-26. Растворы электролитов Теория электролитической диссоциации (ионизации)
- •Теория растворов слабых электролитов. Степень ионизации слабых электролитов и методы ее определения
- •Равновесия в растворах слабых электролитов
- •6,5·10-4 Моль/л
- •Теория сильных электролитов
- •Обменные реакции в растворах электролитов. Типы обменных реакций в растворах электролитов
- •Буферные растворы
- •Общая характеристика окислительно-восстановительных реакций
- •Составление уравнений окислительно-восстановительных реакций
- •Лекции 31-32. Электродные потенциалы. Направление окислительно-восстановительных реакций. Гальванический элементы. Электролиз
- •Электролиз
- •Лекция 33. Коллоидные растворы Общая характеристика коллоидных растворов и методы их получения
- •Строение коллоидных частиц суспензоидов
- •Массовая доля - отношение массы растворенного вещества к массе раствора
- •Список рекомендуемой литературы
- •Оглавление
Некоторые типы многостадийных реакций
Среди многостадийных химических процессов можно выделить несколько групп реакций, представляющих особый интерес: это параллельные, последовательные, сопряженные и цепные реакции.
Параллельные реакции имеют одинаковые исходные вещества, но разные продукты взаимодействия. Так, например, при нагревании триоксохлората(V) калия KClO3 одновременно протекают две реакции:
2KClO3 = 2KCl + 3O2
и
4KClO3 = 3KClO4 + KCl
В случае первой реакции одним из продуктов взаимодействия является кислород, в случае второй - тетраоксохлорат(VII) калия - KClO4. Можно добиться преимущественного протекания одной из этих реакций. Так, при введении в систему катализатора MnО2 взаимодействие преимущественно протекает по первому уравнению. Но и в этом случае какие-то количества KClO4 будут образовываться.
Последовательные реакции - это системы реакций, в которых каждый продукт предшествующей стадии является реагентом в последующей стадии. Последовательные реакции очень распространены. Так, например, при электрохимическом окислении хлорида калия до тетрахлората(VII) калия, протекающем на аноде по суммарному уравнению
Cl- + 4H2O – 8e- = ClO + 8H+
промежуточными
продуктами, подвергающимися последующему
окислению, являются хлор и анионы ClO-,
ClO
,
ClO
.
Сопряженными реакциями называются процессы, один из которых инициирует другой. Примером подобных реакций может служить окисление триоксобромной(V) кислотой HBrO3 сернистой и триоксомышьяковой(III) кислот при их совместном присутствии. H2SO3 и H3AsO3 являются восстановителями, окисляющимися достаточно активными окислителями до H2SO4 и H3AsO4. Триоксобромная(V) кислота окисляет H2SO3, но не окисляет H3AsO3; однако при действии HBrO3 на смесь этих кислот, окисляется как сернистая, так и триоксомышьяковая(III) кислота. Это явление объясняется тем, что восстановление НВrO3 сернистой кислотой протекает ступенчато; образующаяся в качестве промежуточного продукта оксобромная(I) кислота НВrО способна окислять H3AsO3.
Цепные реакции - это сложные системы параллельных, последовательных и сопряженных реакций, в случае которых первичное активирование частицы приводит к превращению большого числа молекул.
Простейшим типом цепных реакций являются реакции с неразветвленными цепями. Эти цепные реакции включают стадии зарождения, продолжения и обрыва цепи. Рассмотрим неразветвленную цепную реакцию, протекающую при действии света на смесь водорода с хлором. Зарождением цепи в этом случае является реакция образования атомных радикалов хлора при поглощении молекулой хлора кванта лучистой энергии
hν
Cl2 = 2Cl
Продолжение цепи обеспечивается протеканием реакций
H2 + Cl = HCl + H
H+ Cl2 = HCl + Cl
.................................
Обрыв цепи может произойти за счет образования молекул водорода и хлора из радикалов:
Н + Н = Н2
Cl + Cl = Cl2
Заметим, однако, что далеко не всегда образование молекул Н2 и Cl2 из атомов обрывает цепь. Образовавшиеся из атомарного водорода или хлора молекулы обладают избыточной энергией и очень легко вновь распадаются на атомы. Для обрыва цепи необходимо, чтобы какая-нибудь частица увела избыточную энергия от "горячих" молекул Н2 и Сl2. Это наблюдается, когда столкновение происходит на стенке сосуда или при столкновении "горячей молекулы" в момент ее образования с какой-нибудь частицей, которой может быть передана избыточная энергия. Радикалы могут также связываться примесями, присутствующими в системе. Средняя длина цепи зависит от природы реагирующих веществ. При фотосинтезе хлороводорода поглощение кванта лучистой энергии приводит к образованию нескольких десятков тысяч молекул хлороводорода.
Более сложным типом цепных реакций являются разветвленные процессы, включающие стадии, когда из одного радикала образуются два и более новых радикалов. Эта стадия называется разветвлением цепи. Примером подобного процесса может служить взаимодействие водорода с кислородом, включающее следующие стадии:
Н2 + О2 = ОН + ОН,
Н2 +ОН = Н2О +Н,
Н+ О2 = ОН + О,
Н2 + О = ОН + Н
....................................
Первая реакция соответствует зарождению цепи, вторая - продолжению цепи, третья и четвертая - разветвлению цепи. Подобные реакции обычно протекают лавинообразно и приводят к взрыву.
