- •Таврический национальный университет им. В.И. Вернадского
- •Введение. Предмет химии
- •Лекции 1-2. Современное атомно-молекулярное учение. Основные понятия химии, законы стехиометрии
- •Методы определения молекулярных масс газообразных веществ
- •Методы определения атомных масс
- •2 Метод Дюлонга-Пти
- •Лекции 3-4. Основные положения квантово-механической теории строения атома
- •Принципы описания электронной оболочки многоэлектронного атома
- •Лекции 5-6. Периодический закон д.И. Менделеева в свете квантово-механических представлений
- •Структура периодической системы элементов: периоды, группы, подгруппы элементов
- •Закономерности изменения свойств элементов в периодах и подгруппах периодической системы
- •Элементы-аналоги. Виды аналогии в периодической системе элементов
- •Контракционная аналогия (шринк-аналогия)
- •Распространенность химических элементов
- •Лекции 9-10. Основы теории химической связи. Метод валентных связей
- •Основные положения метода валентных связей
- •Механизмы образования двухцентровой связи. Насыщаемость ковалентной связи
- •Кратность ковалентной связи
- •Делокализованные многоцентровые связи. Теория резонанса
- •Недостатки метода валентных связей
- •Лекция 11. Предсказание геометрической формы молекул. Метод Гиллеспи
- •Лекция 12. Метод молекулярных орбиталей
- •Лекция 13. Ионная связь Особенности ионной связи. Свойства ионных соединений
- •Типы кристаллических решеток ионных соединений. Ионные радиусы
- •Поляризация ионов
- •Лекции 14-15. Металлическая связью Водородная связь. Межмолекулярное взаимодействие. Агрегатное состояние вещества Металлическая связь. Зонная теория кристаллов
- •Межмолекулярное взаимодействие
- •Водородная связь
- •Лекции 16-19. Координационные соединения Основные положения координационной теории
- •Классификация координационных соединений
- •Номенклатура координационных соединений
- •Изомерия координационных соединений
- •Химическая связь в координационных соединениях Метод валентных связей
- •Теория кристаллического поля
- •Метод молекулярных орбиталей
- •Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
- •Теория химического процесса Предмет и основные понятия теории химических процессов
- •Лекции 20-21. Основы химической термодинамики Термодинамические функции. Внутренняя энергия и первый закон термодинамики. Энтальпия
- •Термохимия. Закон Гесса
- •Энтропия. Второй и третий законы термодинамики
- •Свободная энергия Гиббса. Направление химического процесса
- •Лекции 22–23. Химическая кинетика Предмет химической кинетики. Скорость химической реакции. Энергия активации
- •Факторы, влияющие на скорость химической реакции. Катализаторы и катализ
- •Кинетическая классификация реакций.Молекулярность и порядок реакции. Механизмы реакций
- •Некоторые типы многостадийных реакций
- •Химическое равновесие Обратимые и необратимые реакции. Состояние химического равновесия
- •Смещение химического равновесия
- •Растворы Лекция 24. Общая характеристика растворов. Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •1. Давление насыщенного пара над раствором.
- •2.Температуры замерзания и кипения растворов.
- •3. Осмос и осмотическое давление.
- •Лекции 25-26. Растворы электролитов Теория электролитической диссоциации (ионизации)
- •Теория растворов слабых электролитов. Степень ионизации слабых электролитов и методы ее определения
- •Равновесия в растворах слабых электролитов
- •6,5·10-4 Моль/л
- •Теория сильных электролитов
- •Обменные реакции в растворах электролитов. Типы обменных реакций в растворах электролитов
- •Буферные растворы
- •Общая характеристика окислительно-восстановительных реакций
- •Составление уравнений окислительно-восстановительных реакций
- •Лекции 31-32. Электродные потенциалы. Направление окислительно-восстановительных реакций. Гальванический элементы. Электролиз
- •Электролиз
- •Лекция 33. Коллоидные растворы Общая характеристика коллоидных растворов и методы их получения
- •Строение коллоидных частиц суспензоидов
- •Массовая доля - отношение массы растворенного вещества к массе раствора
- •Список рекомендуемой литературы
- •Оглавление
Свободная энергия Гиббса. Направление химического процесса
Одной из важнейших задач, решаемых термодинамикой, является установление принципиальной возможности (или невозможности) самопроизвольного протекания химического процесса.
Как указывалось ранее, протеканию химического процесса благоприятствует повышение энтропии системы. Повышение энтропии достигается разобщением частиц, разрывом химических связей, разрушением кристаллических решеток, растворением веществ и т.д. Однако все эти процессы неизбежно сопровождаются повышением энтальпии системы, что препятствует протеканию процесса. Очевидно, что для решения вопроса о принципиальной возможности протекания химического процесса необходимо одновременно учесть изменение и энтропии, и энтальпии системы. При постоянной температуре и давлении для этой цели используется термодинамическая функция, называемая свободной энергией Гиббса (иногда просто энергией Гиббса). Свободная энергия Гиббса (G) cвязана с энтальпией и энтропией следующим уравнением
G = H - TS
Изменение энергии Гиббса при переходе системы из начального состояния в конечное определяется соотношением
ΔG = ΔH - TΔS
Поскольку уравнение справедливо для процессов, протекающих при постоянных температуре и давлении, функцию G называют также изобарно-изотермическим потенциалом. В полученном уравнении величина ΔН оценивает влияние на возможность протекания процесса энтальпийного фактора, а величина ТΔS - энтропийного фактора. По своему физическому смыслу свободная энергия Гиббса - это та часть ΔН, которая при определенных условиях может быть превращена в работу, совершаемую системой против внешних сил. Остальная часть ΔН, равная ТΔS, представляет "несвободную" энергию, которая идет на повышение энтропии системы и в работу превращена быть не может. Свободная энергия Гиббса - это своеобразный потенциал, определяющий движущую силу химического процесса. Подобно физическим потенциалам (электрическому, гравитационному) энергия Гиббса уменьшается по мере самопроизвольного протекания процесса до тех пор, пока не достигнет минимального значения, после чего процесс прекратится.
Пусть в системе при постоянных давлении и температуре cамопроизвольно протекает какая-то реакция (неравновесный процесс). В этом случае ΔH < TΔS, соответсвенно
ΔG < 0
Таким образом, изменение функции Гиббса может служить критерием при определении направления протекания реакций: в изолированной или закрытой системе при постоянной температуре и давлении самопроизвольно протекают реакции, для которых изменение свободной энергии Гиббса отрицательно (ΔG < 0).
Пусть протекающая в системе реакция обратима. Тогда при заданных условиях прямая реакция принципиально осуществима, если ΔG < 0, а обратная - если ΔG > 0; при ΔG = 0 система будет находиться в состоянии равновесия.
Для изолированных систем ΔН = 0, поэтому
ΔG = - TΔS
Таким образом, в изолированной системе самопроизвольно протекаю процессы, приводящие к повышению энтропии (второй закон термодинамики).
Поскольку в уравнение энергии Гиббса входит энтальпия системы, определить ее абсолютное значение невозможно. Для расчета изменения свободной энергии, отвечающего протеканию той или иной реакции, используют энергии Гиббса образования соединений, участвующих во взаимодействии.
Энергия Гиббса
образования соединения (ΔGf)
- это изменение свободной энергии,
соответствующее синтезу моля данного
соединения из простых веществ. Энергии
Гиббса образования соединений, отнесенные
к стандартным условиям, называются
стандартными и обозначаются символом
ΔG
.
Значения ΔG
приведены в справочной литературе; их
можно также вычислить по значениям
энтальпий образования и энтропий
соответствующих веществ. Пусть, например,
требуется рассчитать ΔG
для Fe3O4, если известна
энтальпия образования этого соединения
(ΔН
(Fe3O4)
= -1117,13 кДж/моль) и энтропии ΔS
железа, кислорода и Fe3O4,
равные 27,15, 205,04 и 146,19 Дж/моль.К.
ΔG (Fe3O4) = ΔH (Fe3O4) - T ΔS
где ΔS - изменение энтропии при протекании реакции
3Fe + 2O2 = Fe3O4
Изменение энтропии рассчитывается по следующему уравнению
ΔS = S (Fe3O4) - [3S (Fe) + 2S (O2)] =
=146,19 - (3.27,15 + 2.205,04) = -345,34 Дж/моль.К =
= -0,34534 кДж/моль.К
Тогда
ΔG (Fe3O4) = -1117,13 - 298(-0,34534) =-1014,2 кДж/моль.К
Полученный результат позволяет заключить, что реакция принципиально возможна при стандартных условиях. В данном случае энтальпийный фактор благоприятствует протеканию реакции (ΔН < 0), а энтропийный - препятствует (ТΔS < 0), но не может увеличить ΔG до положительной величины
Поскольку G является функцией состояния, для реакции
aA + bB = dD + eE
изменение энергии Гиббса можно определить по уравнению
ΔΣ = ΣniΔGf(пр) - ΣmjΔGf(реаг)
В качестве примера оценим принципиальную возможность получения озона при взаимодействии азотной кислоты с кислородом (условия стандартные) по уравнению:
4HNO3(ж) + 5O2(г) = 4O3(г) + 4NO2(г) +2H2O(ж)
Рассчитаем изменение энергии Гиббса в стандартных условиях
ΔG = [4ΔG (O3) + 4ΔG (NO2) + 2ΔG (H2O)] -
- [4ΔG (HNO3) + 5ΔG (O2)] =
= 4.162,78 + 4.52,29 - [4(-79,90) + 5.0] = 1179,82 кДж/моль.К
Самопроизвольное протекание реакции при стандартных условиях принципиально невозможно. В то же время диоксид азота может быть окислен озоном до азотной кислоты, так как для обратной реакции значение ΔG отрицательно.
В заключении следует отметить, что термодинамика изучает лишь изменение системы при переходе из одного состояния в другое, но не пути, по которым может осуществляться такой переход. Вопрос о реальной возможности перехода системы из одного состояния в другое изучает второй раздел теории химических процессов - химическая кинетика.
