- •Таврический национальный университет им. В.И. Вернадского
- •Введение. Предмет химии
- •Лекции 1-2. Современное атомно-молекулярное учение. Основные понятия химии, законы стехиометрии
- •Методы определения молекулярных масс газообразных веществ
- •Методы определения атомных масс
- •2 Метод Дюлонга-Пти
- •Лекции 3-4. Основные положения квантово-механической теории строения атома
- •Принципы описания электронной оболочки многоэлектронного атома
- •Лекции 5-6. Периодический закон д.И. Менделеева в свете квантово-механических представлений
- •Структура периодической системы элементов: периоды, группы, подгруппы элементов
- •Закономерности изменения свойств элементов в периодах и подгруппах периодической системы
- •Элементы-аналоги. Виды аналогии в периодической системе элементов
- •Контракционная аналогия (шринк-аналогия)
- •Распространенность химических элементов
- •Лекции 9-10. Основы теории химической связи. Метод валентных связей
- •Основные положения метода валентных связей
- •Механизмы образования двухцентровой связи. Насыщаемость ковалентной связи
- •Кратность ковалентной связи
- •Делокализованные многоцентровые связи. Теория резонанса
- •Недостатки метода валентных связей
- •Лекция 11. Предсказание геометрической формы молекул. Метод Гиллеспи
- •Лекция 12. Метод молекулярных орбиталей
- •Лекция 13. Ионная связь Особенности ионной связи. Свойства ионных соединений
- •Типы кристаллических решеток ионных соединений. Ионные радиусы
- •Поляризация ионов
- •Лекции 14-15. Металлическая связью Водородная связь. Межмолекулярное взаимодействие. Агрегатное состояние вещества Металлическая связь. Зонная теория кристаллов
- •Межмолекулярное взаимодействие
- •Водородная связь
- •Лекции 16-19. Координационные соединения Основные положения координационной теории
- •Классификация координационных соединений
- •Номенклатура координационных соединений
- •Изомерия координационных соединений
- •Химическая связь в координационных соединениях Метод валентных связей
- •Теория кристаллического поля
- •Метод молекулярных орбиталей
- •Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
- •Теория химического процесса Предмет и основные понятия теории химических процессов
- •Лекции 20-21. Основы химической термодинамики Термодинамические функции. Внутренняя энергия и первый закон термодинамики. Энтальпия
- •Термохимия. Закон Гесса
- •Энтропия. Второй и третий законы термодинамики
- •Свободная энергия Гиббса. Направление химического процесса
- •Лекции 22–23. Химическая кинетика Предмет химической кинетики. Скорость химической реакции. Энергия активации
- •Факторы, влияющие на скорость химической реакции. Катализаторы и катализ
- •Кинетическая классификация реакций.Молекулярность и порядок реакции. Механизмы реакций
- •Некоторые типы многостадийных реакций
- •Химическое равновесие Обратимые и необратимые реакции. Состояние химического равновесия
- •Смещение химического равновесия
- •Растворы Лекция 24. Общая характеристика растворов. Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •1. Давление насыщенного пара над раствором.
- •2.Температуры замерзания и кипения растворов.
- •3. Осмос и осмотическое давление.
- •Лекции 25-26. Растворы электролитов Теория электролитической диссоциации (ионизации)
- •Теория растворов слабых электролитов. Степень ионизации слабых электролитов и методы ее определения
- •Равновесия в растворах слабых электролитов
- •6,5·10-4 Моль/л
- •Теория сильных электролитов
- •Обменные реакции в растворах электролитов. Типы обменных реакций в растворах электролитов
- •Буферные растворы
- •Общая характеристика окислительно-восстановительных реакций
- •Составление уравнений окислительно-восстановительных реакций
- •Лекции 31-32. Электродные потенциалы. Направление окислительно-восстановительных реакций. Гальванический элементы. Электролиз
- •Электролиз
- •Лекция 33. Коллоидные растворы Общая характеристика коллоидных растворов и методы их получения
- •Строение коллоидных частиц суспензоидов
- •Массовая доля - отношение массы растворенного вещества к массе раствора
- •Список рекомендуемой литературы
- •Оглавление
Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
Координационные соединения, подобно другим химическим соединениям, способны вступать в разнообразные химические реакции как обменные, так и окислительно-восстановительные. Если подобные реакции не сопровождаются изменением внутренней (координационной) сферы, то их относят к внешнесферным реакциям. Примером внешнесферной реакции может служить взаимодействие сульфата гексаамминникеля(II) с концентрированным раствором бромида калия:
[Ni(NH3)6]SO4 + 2KBr [Ni(NH3)6]Br2 + K2SO4
(осадок)
Если в процессе взаимодействия внутренняя (координационная) сфера претерпевает изменения, то протекающая реакция называется внутрисферной. Наиболее распространенным видом таких реакций являются реакции внутрисферного замещения лигандов. Так, при действии на тетрахлороплатинат(II) водорода концентрированным раствором аммиака протекает реакция:
H2[PtCl4] + 6NH3 = [Pt(NH3)4]Cl2 + 2NH4Cl
в результате которой ионы хлора замещаются на молекулы аммиака.
Реакции внутрисферного замещения лигандов подчиняются определенным закономерностям, важнейшей из которых является принцип транс-влияния, открытый И. И. Черняевым в 1926 г.
Принцип транс-влияния можно сформулировать следующим образом: всякий лиганд оказывает влияние на лиганд, находящийся по отношению к нему в транс-положении, увеличивая его лабильность (способность к замещению).
Различные лиганды по-разному воздействуют на транс-лиганды. По силе этого воздействия лиганды могут быть расположены в так называемые ряды транс-влияния. Так, для комплексов платины(II) ряд трансвлияния имеет следующий вид:
CN¯ CO NO2¯ I¯ Br¯ Cl¯ NH3 OH¯ H2O
В этом ряду слева направо способность повышать лабильность транс-лиганда понижается. Аналогичные ряды, не слишком отличающиеся от приведенного, построены и для других центральных атомов (Pd(II), Pt(IV), Ir(III), Rh(III), Co(III)). Совершенно очевидно, что транс-влияние наблюдается лишь в комплексах, для которых возможно транс-положение лигандов (например, в квадратных и октаэдрических, но не в тетраэдрических комплексах).
Механизм транс-влияния может быть объяснен в свете поляризационных представлений (Б. В. Некрасов, 1935 г.). Рассмотрим этот вопрос на примере квадратного комплекса [ML4]2-, где М - двухзарядный катион, а L - однозарядные анионы L(1), L(2), L(3), L(4). Такой комплекс без обозначения зарядов центрального атома и лигандов изображен на рис. 33,а.
Рис. 33. Механизм транс-влияния лигандов
В этом комплексе центральный атом, несущий положительный эффективный заряд, поляризует лиганды, индуцируя в них диполи, ориентированные отрицательным полюсом в сторону центрального атома. Лиганды также поляризуют центральный атом, но поскольку все четыре диполя одинаковы, результирующий диполь центрального атома будет равен нулю. Диполи лигандов, находящихся в транс-положении, обращены друг к другу одноименными полюсами и взаимно друг друга отталкивают, одинаково повышая способность лигандов к замещению.
Заменим лиганд L(1) лигандом Х, который сильнее поляризует центральный атом, чем лиганды L. В результате в центральном атоме возникает некоторый результирующий диполь, упрочняющий связь центрального атома с лигандом Х и ослабляющий связь его с лигандом L(3) (рис. 33,б). При протекании следующей стадии реакции замещения именно лиганд L(3) проявит наибольшую подвижность и будет замещаться первым. Аналогичное явление наблюдается, если лигандами являются полярные молекулы.
Принцип транс-влияния позволяет предсказать ход многих реакций внутрисферного замещения. Рассмотрим в качестве примера образования дихлородиамминплатины - комплекса, имеющего цис- и транс-изомеры. Это соединение может быть получено двумя путями: действием аммиака на тетрахлороплатинат(II) водорода и при нагревании хлорида тетраамминплатины(II) по следующим уравнениям
[PtCl4]2-
+ 4NH3 + 2H+ = [Pt(NH3)2Cl2]
+ 2NH
и
[Pt(NH3)4]Cl2 = [Pt(NH3)2Cl2] + 2NH3
Пусть комплекс [PtCl4]2- (рис. 34,а) взаимодействует с аммиаком.
Рис. 34. Образование цис-изомера [Pt(NH3)2Cl2]
Ионы хлора замещаются на молекулы аммиака последовательно. В комплексе [PtCl4]2- все ионы Сl- испытывают одинаковое транс-влияние со стороны таких же ионов хлора и на первой стадии процесса замещаются с одинаковой вероятностью. Пусть на молекулу аммиака заместился Сl(1) (рис. 34,б). Теперь наименьшее транс-влияние в комплексе будет испытывать Сl(3), транс-лигандом которого является молекула аммиака, тогда как транс-лигандами Сl(2) и Сl(4) будут ионы хлора, располагающегося в ряду транс-влияния левее аммиака. Поэтому на второй стадии процесса произойдет замещение на аммиак либо Сl(2), либо Cl (4); и в том, и в другом случае образуется цис-изомер дихлородиамминплатины.
При протекании второй реакции на первой стадии на ион хлора может с равной вероятностью заместиться любая молекула аммиака, так как все они испытывают одинаковое транс-влияние со стороны NH3 (рис. 35). На второй стадии процесса заместится та молекулу аммиака, транс-лигандом которой является ион хлора, т. е. NH3(3), с образованием транс-изомера.
Рис. 35. Образование транс-изомера [Pt(NH3)2Cl2]
