- •Таврический национальный университет им. В.И. Вернадского
- •Введение. Предмет химии
- •Лекции 1-2. Современное атомно-молекулярное учение. Основные понятия химии, законы стехиометрии
- •Методы определения молекулярных масс газообразных веществ
- •Методы определения атомных масс
- •2 Метод Дюлонга-Пти
- •Лекции 3-4. Основные положения квантово-механической теории строения атома
- •Принципы описания электронной оболочки многоэлектронного атома
- •Лекции 5-6. Периодический закон д.И. Менделеева в свете квантово-механических представлений
- •Структура периодической системы элементов: периоды, группы, подгруппы элементов
- •Закономерности изменения свойств элементов в периодах и подгруппах периодической системы
- •Элементы-аналоги. Виды аналогии в периодической системе элементов
- •Контракционная аналогия (шринк-аналогия)
- •Распространенность химических элементов
- •Лекции 9-10. Основы теории химической связи. Метод валентных связей
- •Основные положения метода валентных связей
- •Механизмы образования двухцентровой связи. Насыщаемость ковалентной связи
- •Кратность ковалентной связи
- •Делокализованные многоцентровые связи. Теория резонанса
- •Недостатки метода валентных связей
- •Лекция 11. Предсказание геометрической формы молекул. Метод Гиллеспи
- •Лекция 12. Метод молекулярных орбиталей
- •Лекция 13. Ионная связь Особенности ионной связи. Свойства ионных соединений
- •Типы кристаллических решеток ионных соединений. Ионные радиусы
- •Поляризация ионов
- •Лекции 14-15. Металлическая связью Водородная связь. Межмолекулярное взаимодействие. Агрегатное состояние вещества Металлическая связь. Зонная теория кристаллов
- •Межмолекулярное взаимодействие
- •Водородная связь
- •Лекции 16-19. Координационные соединения Основные положения координационной теории
- •Классификация координационных соединений
- •Номенклатура координационных соединений
- •Изомерия координационных соединений
- •Химическая связь в координационных соединениях Метод валентных связей
- •Теория кристаллического поля
- •Метод молекулярных орбиталей
- •Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
- •Теория химического процесса Предмет и основные понятия теории химических процессов
- •Лекции 20-21. Основы химической термодинамики Термодинамические функции. Внутренняя энергия и первый закон термодинамики. Энтальпия
- •Термохимия. Закон Гесса
- •Энтропия. Второй и третий законы термодинамики
- •Свободная энергия Гиббса. Направление химического процесса
- •Лекции 22–23. Химическая кинетика Предмет химической кинетики. Скорость химической реакции. Энергия активации
- •Факторы, влияющие на скорость химической реакции. Катализаторы и катализ
- •Кинетическая классификация реакций.Молекулярность и порядок реакции. Механизмы реакций
- •Некоторые типы многостадийных реакций
- •Химическое равновесие Обратимые и необратимые реакции. Состояние химического равновесия
- •Смещение химического равновесия
- •Растворы Лекция 24. Общая характеристика растворов. Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •1. Давление насыщенного пара над раствором.
- •2.Температуры замерзания и кипения растворов.
- •3. Осмос и осмотическое давление.
- •Лекции 25-26. Растворы электролитов Теория электролитической диссоциации (ионизации)
- •Теория растворов слабых электролитов. Степень ионизации слабых электролитов и методы ее определения
- •Равновесия в растворах слабых электролитов
- •6,5·10-4 Моль/л
- •Теория сильных электролитов
- •Обменные реакции в растворах электролитов. Типы обменных реакций в растворах электролитов
- •Буферные растворы
- •Общая характеристика окислительно-восстановительных реакций
- •Составление уравнений окислительно-восстановительных реакций
- •Лекции 31-32. Электродные потенциалы. Направление окислительно-восстановительных реакций. Гальванический элементы. Электролиз
- •Электролиз
- •Лекция 33. Коллоидные растворы Общая характеристика коллоидных растворов и методы их получения
- •Строение коллоидных частиц суспензоидов
- •Массовая доля - отношение массы растворенного вещества к массе раствора
- •Список рекомендуемой литературы
- •Оглавление
Основные положения метода валентных связей
Сущность метода ВС может быть сведена к следующим основным положениям:
1. Ковалентная связь реализуется за счет образования электронной пары, общей для взаимодействующих атомов. Подобная двухцентровая, двухэлектронная связь называется ковалентной локализованной связью.
2. Ковалентные двухцентровые связи образуют электроны с антипараллельными спинами. Необходимость антипараллельности спинов для образования связи была показана В. Гайтлером и Ф. Лондоном, которые в 1927 году, используя уравнение Шредингера, рассчитали изменение потенциальной энергии системы для двух атомов водорода в зависимости от межъядерного расстояния. При этом было установлено, что в случае параллельных спинов электронов энергия системы непрерывно возрастает по мере сближения атомов. Если же спины антипараллельны, то при уменьшении межъядерного расстояния потенциальная энергия первоначально понижается, проходит через минимум, а при дальнейшем сближении атомов начинает быстро расти (рис. 12). В этом случае молекула водорода образуется; при этом положение минимума на кривой потенциальной энергии отвечает длине связи в молекуле Н2, а глубина минимума - энергии связи.
3. При образовании ковалентной связи происходит перекрывание электронных орбиталей взаимодействующих атомов. Сущность перекрывания состоит в том, что после образования связи расстояние между ядрами становится меньше суммы радиусов взаимодействующих атомов. Так, для молекулы водорода межъядерное расстояние составляет 74 пм, тогда как сумма атомных радиусов равна 106 пм. В результате возникает область пространства, в которой с достаточной вероятностью может находиться электрон как одного, так и другого атома (зона перекрывания). В зоне перекрывания каждый электрон, образующий локализованную связь, описывается волновыми функциями обоих взаимодействующих атомов.
Рис. 12. Зависимость энергии молекулы водорода от межъядерного расстояния в случае параллельности (а) или антипараллельности (б) спинов электронов
Количественной характеристикой перекрывания является интеграл перекрывания
где a и b - волновые функции электронов атомов, между которыми образуется связь.
В зависимости от знака волновых функций и ориентации орбиталей в пространстве возможны три типа перекрывания:
а) Положительное (эффективное) перекрывание. В области перекрывания волновые функции обоих электронов (a и b) имеют одинаковый знак. При положительном перекрывании растет электронная плотность в зоне перекрывания и происходит образование связи.
б) Отрицательное (неэффективное) перекрывание. В области перекрывания волновые функции а и b имеют разный знак. В случае отрицательного перекрывания электронная плотность в области перекрывания понижается, усиливается взаимное отталкивание ядер и образование связи становится невозможным.
в) Нулевое перекрывание. Перекрывание не сопровождается изменением электронной плотности в зоне перекрывания.
Эффективное перекрывание Неэффективное перекрывание Нулевое перекрывание
4. Молекулярные орбитали (молекулярные волновые функции) конструируются как произведения атомных орбиталей (атомных волновых функций) и линейные комбинации таких произведений.
