
- •Тема 1. Географическая оболочка и ее дифференциация
- •Тема 2. Земля в ряду других планет
- •2.1. Понятие о Галактике
- •2.2.Солнце
- •5.3. Понятие о Солнечной системе
- •5.4. Гипотезы, объясняющие происхождение и развитие Солнечной системы
- •Тема 3. Форма и размеры земли
- •3.1.Земля-шар. Значение шарообразности Земли для географической оболочки.
- •3.2.Земля-сфероид
- •3.3.Земля-геоид
- •Тема 4. Глубинное строение земли
- •4.1. Общее представление о глубинном строении Земли
- •4.2. Понятие о земной коре. Гипотезы, объясняющие происхождение и развитие земной коры
- •4.3.Океанская и материковая земная кора
- •Тема 5. Материки и океаны
- •5.1. Материки и части света
- •5.2.Вертикальное расчленение суши
- •5.3.Рельеф и строение дна Мирового океана
- •5.4. Закономерности расположения континентов
- •Тема 6. Острова
- •Тема 7. Движения земного шара и их географические следствия
- •7.1.Суточное вращение Земли и его значение для географической оболочки
- •7.2. Годовое вращение Земли вокруг Солнца и его географическое значение
- •7.3. Пояса освещения
- •7.4. Движение двойной планеты Земля-Луна и приливное трение
- •Тема 8. Атмосфера и климаты земли
- •8.1.Состав атмосферы
- •Всего: 100 %
- •8.2. Строение атмосферы
- •8.3.Понятие о солнечной радиации
- •8.4.Интенсивность солнечной радиации. Солнечная постоянная
- •8.5.Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере
- •8.6.Изменение солнечной радиации при прохождении через атмосферу
- •8.7. Солнечная радиация у земной поверхности
- •8.8. Сезонные колебания суммарной радиации
- •8.9. Усвоение радиации земной поверхностью. Альбедо
- •8.10. Теплоизлучение земной поверхности и атмосферы
- •8.11.Радиационный бюджет земной поверхности
- •8.12.Распределение радиационного баланса по поверхности земного шара
- •8.13.Сезонные колебания радиационного баланса
- •8.14.Понятие о термобарическом поле Земли
- •8.15.Тепловой баланс земной поверхности и системы Земля-тропосфера
- •8.16.Нагревание и охлаждение атмосферы в процессе взаимодействия системы «океан-атмосфера-материки»
- •8.17.Инверсия температуры
- •8.18.Показатели теплового режима воздуха
- •8.19.Распределение тепла по земной поверхности
- •8.20.Тепловые пояса
- •8.21.Морской и континентальный ход температуры
- •8.22.Атмосферное давление
- •8.23.Барическое поле
- •8.24.Горизонтальный барический градиент. Ветер
- •8.25.Причины и значение неоднородности барического поля Земли
- •8.26.Географические типы воздушных масс
- •8.27. Атмосферные фронты
- •8.28. Зонально-региональное распределение атмосферного давления на уровне моря, ветры в нижней тропосфере и формирование климатических поясов земного шара
- •8.29.Пояса переменной циркуляции атмосферы
- •8.30.Центры действия атмосферы
- •8.31. Общая циркуляция атмосферы
- •8.32. Движущие силы циркуляции атмосферы
- •8.33. Западный перенос
- •8.34. Пассатная циркуляция
- •8.35. Полярная циркуляция
- •8.36. Цикло-антициклоническая циркуляция
- •8.37. Тропические циклоны-тайфуны
- •8.38. Муссонная циркуляция и муссонная тенденция
- •8.39. Струйные течения
- •8.40. Трансформация циркуляционных течений воздуха под действием рельефа
- •8.41. Влагооборот
- •8.42. Испарение и испаряемость
- •8.43. Влажность воздуха
- •8.44. Конденсация и сублимация
- •Уровень конденсации
- •8.46. Система океан — атмосфера — материки
- •8.47. Туманы
- •8.48. Облака. Классификация облаков
- •8.49. Образование атмосферных осадков
- •Океанско-атмосферно-материковый влагооборот
- •Распределение осадков по земной поверхности
- •8.52. Снежный покров
- •Годовой режим осадков
- •Атмосферное увлажнение
- •1.Гидротермический коэффициент г. Т. Селянинова:
- •3.Коэффициент увлажнения г.Н.Высоцкого – н.Н.Иванова:
- •8.55. Засухи
- •Краткий обзор климатов земли
- •8.56. Погода и климат
- •8.57. Определение и классификация климатов
- •8.58. Генетическая классификация климатов б. П. Алисова
- •I. Жаркие климаты
- •1.3.Субэкваториальный (субэкваториальных муссонов, или саванновый) климат .
- •II.Субтропические климаты
- •III.Умеренные климаты
- •IV.Холодные климаты
- •V. Климаты вечного мороза
- •8.59. Изменение и развитие климата
- •Гидросфера
- •Происхождение воды
- •Развитие гидросферы
- •Единство и части гидросферы
- •Некоторые свойства воды в аспекте ее роли в географической оболочке
- •Мировой океан, части Мирового океана
- •Уровень океанов и морей
- •Физико-химические свойства морской воды
- •Проникновение света в воду. Прозрачность и цвет морской воды
- •Взаимодействие атмосферы и океаносферы
- •Структура Мирового океана
- •Вертикальная стратификация Мирового океана
- •Водные массы и океанские фронты верхней сферы океана
- •Планетарная циркуляция верхней сферы океана. Океанские течения.
- •Приливы и отливы
- •Волнение водной поверхности
- •Тепловой режим океанов
- •Газовый режим океаносферы
- •Питательные соли в водах Мирового океана
- •Донные отложения
- •Океан как среда жизни и источник природных ресурсов органического происхождения.
8.20.Тепловые пояса
Основная закономерность в распределении тепла по земной поверхности – зональность – позволяет выделить тепловые (температурные) пояса. Тепловые пояса не совпадают с поясами освещения, образующимися по астрономическим законам, т.к. тепловой режим зависит не только от освещения, но и от ряда других факторов.
По обе стороны от экватора, приблизительно до 300 с.ш. и ю.ш., находится жаркий пояс, ограниченный годовой изотермой 200 С.
В средних широтах находятся умеренные температурные пояса. Они ограничены изотермами 100 С самого теплого месяца. С этими изотермами совпадает граница распространения древесных растений (наименьшие средние температуры, при которых вызревают семена деревьев составляют 100 С; при меньшей месячной сумме температур леса не возобновляются).
В субполярных широтах простираются холодные пояса, полярными границами которых являются изотермы 00С самого теплого месяца. Они в общих чертах совпадают с зонами тундр.
Вокруг полюсов находятся пояса вечного мороза, в которых температура любого месяца ниже 00 С. Здесь лежат вечные снега и льды.
Жаркий пояс, несмотря на свою большую площадь, в тепловом отношении довольно однороден. Средняя температура года изменяется от 26 0 с на экваторе до 20 0 С на тропических пределах. Годовые и суточные амплитуды незначительны. Сравнительно однородны в термическом отношении пояса холодный и вечного мороза в силу небольших пределов. Умеренные пояса, охватывающие широты от субтропических до субполярных, термически весьма неоднородны. Здесь годовая температура на одних широтах достигает 200 С, а на других даже температура самого теплого месяца не превышает 100С. Выявляется хорошо выраженная дифференциация умеренных поясов. Северный умеренный пояс в связи с его континентальностью (материковостью) дифференцируется и в долготном направлении: в годовом ходе температур здесь ясно сказываются приморское и внутриматериковое положение.
В умеренных поясах в самом первом приближении выделяются субтропические широты, термический режим которых обеспечивает произрастание субтропической растительности, умеренно-теплые широты, где тепло обеспечивает существование широколиственных лесов и степей, и бореальные широты с суммой тепла, достаточной только для распространения хвойных лесов и мелколиственных деревьев.
При общем сходстве температурных поясов обоих полушарий ясно выступает тепловая диссиметрия Земли относительно экватора. Термический экватор смещен к северу относительно географического, северное полушарие теплее южного, в южном полушарии ход температуры океанический, в северном – материковый; Арктика теплее Антарктики.
8.21.Морской и континентальный ход температуры
Секторные различия теплового режима нижней тропосферы проявляются в степени океаничности или континентальности климата. Наиболее ярко эта черта климата проявляется в годовой амплитуде температур, то есть в разнице между наиболее теплым и холодным месяцами.
Величина годовой амплитуды определяется следующими тремя факторами:
широтными различиями в интенсивности солнечной радиации в зимнюю и летнюю части года;
соотношением площадей материка и океана в данном широтном поясе;
затратами тепла на испарение, зависящими с свою очередь от влажности климата.
Наибольшие годовые амплитуды от 23 до 320 С свойственны среднему поясу наибольшей площади континентов, в котором различное нагревание и охлаждение материков и океанов, образование положительных и отрицательных температурных аномалий обусловливает различный ход температуры на океане и в глубине континентов.
Рассмотрим ход годовой амплитуды температур в условиях морского, переходного и континентального климатов в умеренном поясе.
В качестве границы между морским и континентальным климатами средних широт можно принять годовую амплитуду 250 С. Если годовая амплитуда меньше 250 С, климат морской, больше – материковый. Между ними находится широкая меридиональная полоса переходного климата с разницей температур крайних месяцев около 230 С. Она проходит через Карелию, Беларусь, Западную Украину.
Годовая амплитуда температур в континентальных климатах нарастает за сет зимних холодов – в приморских странах зима теплая, в материковых морозная. Летние месяцы внутри материков жаркие, а на берегах океанов теплые, но разница не так значительна, как зимой.
Отличительной чертой морского климата является смещение самого теплого времени с июля на август, а самого холодного с января на февраль.
Различие между морским и материковым климатами заключается и в продолжительности переходных периодов: весна и осень в морских странах продолжительные – до двух месяцев, а в континентальных – до двух недель.
Показателями континентальности или океаничности климата служит и суточная амплитуда температур. Внутри материков днем жарко, ночью холодно, на берегах морей днем тепло, ночью умеренно прохладно.
Годовая амплитуда температур на всей Земле равно в среднем 100 С: в северном полушарии она составляет 13,80С, а в южном – 6,2 0 С.
Наибольшая на Земле годовая амплитуда зафиксирована в Восточной Сибири: абсолютный максимум и минимум в Верхоянске, например, составляют +34 и – 680 С; в Оймяконе +31 и -710 С. Таким образом амплитуда абсолютных температур составляет 102 0 С.
Численные показатели континентальности климата. Современные данные о роли испарения и скрытой теплоты парообразования в нагревании атмосферы дают основания по-новому подойти к характеристике морского и континентального климата. Очевидно, что физическая сущность континентальности заключается в том, что территория с таким климатом получает мало тепла от фазового перехода пара в воду, а с морским – много. Соответственно, в сухом воздухе велико летнее и дневное нагревание турбулентным теплообменом, а зимой и ночью большое излучение.
Основной показатель континентальности климата может быть выведен из формулы теплового баланса. Индекс континентальности обратно пропорционален затрате тепла на испарение.
На океанах на испарение затрачивается в среднем 100 ккал/см2 в год. Это можно принять за 100 % океаничности или 0 % континентальности климата. В Восточной Сибири, Центральной Австралии и Сахаре на испарение расходуется только 10 ккал/см2 в год. Континентальность такого климата можно выразить так: 100 ккал на океанах – 10 ккал на данной территории равно 90. Это число принимается за 90 % континентальности. Климата с континентальностью 100 % на Земле нет. Такой показатель означал бы, что территория находится вне влияния океана и выпала из планетарного влагооборота.
В Амазонии на испарение расходуется 80 ккал/см2 в год, или Континентальность составляет примерно 20 %. У побережья Западной Европы соответственно 60 ккал/см2 в год, или Континентальность 40 %. В Западной Европе, Северной Америке, на Дальнем Востоке, в Индокитае, в Центральной Америке и Центральной Африке – 40 ккал/см2 в год, или континентальность 60 %.
В тропическом поясе Континентальность выражается также в отрицательном водном балансе, в большой суточной амплитуде температур и сопутствующих этому явлениях.