
- •Тема 1. Географическая оболочка и ее дифференциация
- •Тема 2. Земля в ряду других планет
- •2.1. Понятие о Галактике
- •2.2.Солнце
- •5.3. Понятие о Солнечной системе
- •5.4. Гипотезы, объясняющие происхождение и развитие Солнечной системы
- •Тема 3. Форма и размеры земли
- •3.1.Земля-шар. Значение шарообразности Земли для географической оболочки.
- •3.2.Земля-сфероид
- •3.3.Земля-геоид
- •Тема 4. Глубинное строение земли
- •4.1. Общее представление о глубинном строении Земли
- •4.2. Понятие о земной коре. Гипотезы, объясняющие происхождение и развитие земной коры
- •4.3.Океанская и материковая земная кора
- •Тема 5. Материки и океаны
- •5.1. Материки и части света
- •5.2.Вертикальное расчленение суши
- •5.3.Рельеф и строение дна Мирового океана
- •5.4. Закономерности расположения континентов
- •Тема 6. Острова
- •Тема 7. Движения земного шара и их географические следствия
- •7.1.Суточное вращение Земли и его значение для географической оболочки
- •7.2. Годовое вращение Земли вокруг Солнца и его географическое значение
- •7.3. Пояса освещения
- •7.4. Движение двойной планеты Земля-Луна и приливное трение
- •Тема 8. Атмосфера и климаты земли
- •8.1.Состав атмосферы
- •Всего: 100 %
- •8.2. Строение атмосферы
- •8.3.Понятие о солнечной радиации
- •8.4.Интенсивность солнечной радиации. Солнечная постоянная
- •8.5.Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере
- •8.6.Изменение солнечной радиации при прохождении через атмосферу
- •8.7. Солнечная радиация у земной поверхности
- •8.8. Сезонные колебания суммарной радиации
- •8.9. Усвоение радиации земной поверхностью. Альбедо
- •8.10. Теплоизлучение земной поверхности и атмосферы
- •8.11.Радиационный бюджет земной поверхности
- •8.12.Распределение радиационного баланса по поверхности земного шара
- •8.13.Сезонные колебания радиационного баланса
- •8.14.Понятие о термобарическом поле Земли
- •8.15.Тепловой баланс земной поверхности и системы Земля-тропосфера
- •8.16.Нагревание и охлаждение атмосферы в процессе взаимодействия системы «океан-атмосфера-материки»
- •8.17.Инверсия температуры
- •8.18.Показатели теплового режима воздуха
- •8.19.Распределение тепла по земной поверхности
- •8.20.Тепловые пояса
- •8.21.Морской и континентальный ход температуры
- •8.22.Атмосферное давление
- •8.23.Барическое поле
- •8.24.Горизонтальный барический градиент. Ветер
- •8.25.Причины и значение неоднородности барического поля Земли
- •8.26.Географические типы воздушных масс
- •8.27. Атмосферные фронты
- •8.28. Зонально-региональное распределение атмосферного давления на уровне моря, ветры в нижней тропосфере и формирование климатических поясов земного шара
- •8.29.Пояса переменной циркуляции атмосферы
- •8.30.Центры действия атмосферы
- •8.31. Общая циркуляция атмосферы
- •8.32. Движущие силы циркуляции атмосферы
- •8.33. Западный перенос
- •8.34. Пассатная циркуляция
- •8.35. Полярная циркуляция
- •8.36. Цикло-антициклоническая циркуляция
- •8.37. Тропические циклоны-тайфуны
- •8.38. Муссонная циркуляция и муссонная тенденция
- •8.39. Струйные течения
- •8.40. Трансформация циркуляционных течений воздуха под действием рельефа
- •8.41. Влагооборот
- •8.42. Испарение и испаряемость
- •8.43. Влажность воздуха
- •8.44. Конденсация и сублимация
- •Уровень конденсации
- •8.46. Система океан — атмосфера — материки
- •8.47. Туманы
- •8.48. Облака. Классификация облаков
- •8.49. Образование атмосферных осадков
- •Океанско-атмосферно-материковый влагооборот
- •Распределение осадков по земной поверхности
- •8.52. Снежный покров
- •Годовой режим осадков
- •Атмосферное увлажнение
- •1.Гидротермический коэффициент г. Т. Селянинова:
- •3.Коэффициент увлажнения г.Н.Высоцкого – н.Н.Иванова:
- •8.55. Засухи
- •Краткий обзор климатов земли
- •8.56. Погода и климат
- •8.57. Определение и классификация климатов
- •8.58. Генетическая классификация климатов б. П. Алисова
- •I. Жаркие климаты
- •1.3.Субэкваториальный (субэкваториальных муссонов, или саванновый) климат .
- •II.Субтропические климаты
- •III.Умеренные климаты
- •IV.Холодные климаты
- •V. Климаты вечного мороза
- •8.59. Изменение и развитие климата
- •Гидросфера
- •Происхождение воды
- •Развитие гидросферы
- •Единство и части гидросферы
- •Некоторые свойства воды в аспекте ее роли в географической оболочке
- •Мировой океан, части Мирового океана
- •Уровень океанов и морей
- •Физико-химические свойства морской воды
- •Проникновение света в воду. Прозрачность и цвет морской воды
- •Взаимодействие атмосферы и океаносферы
- •Структура Мирового океана
- •Вертикальная стратификация Мирового океана
- •Водные массы и океанские фронты верхней сферы океана
- •Планетарная циркуляция верхней сферы океана. Океанские течения.
- •Приливы и отливы
- •Волнение водной поверхности
- •Тепловой режим океанов
- •Газовый режим океаносферы
- •Питательные соли в водах Мирового океана
- •Донные отложения
- •Океан как среда жизни и источник природных ресурсов органического происхождения.
8.6.Изменение солнечной радиации при прохождении через атмосферу
Прямые солнечные лучи, пронизывающие атмосферу при безоблачном небе, называются прямой солнечной радиацией. Максимальная ее величина при высокой прозрачности атмосферы на перпендикулярной лучам поверхности в тропическом поясе равна около 1,05 – 1, 19 кВт/м2 (1,5 – 1,7 кал/см2 х мин. В средних широтах напряжение полуденной радиации обычно составляет около 0,70 – 0,98 кВт /м2 х мин (1,0 – 1,4 кал/см2 х мин). В горах оно увеличивается.
Часть солнечных лучей от соприкосновения с молекулами газов и аэрозолями рассеивается и переходит в рассеянную радиацию. На земную поверхность рассеянная радиация поступает уже не от солнечного диска, а от всего небосвода и создает повсеместную дневную освещенность. От нее в солнечные дни светло и там, куда не проникают прямые лучи, например под пологом леса. Наряду с прямой радиацией рассеянная радиация также служит источником тепла.
Абсолютная величина рассеянной радиации тем больше, чем интенсивнее прямая. Относительное значение рассеянной радиации возрастает с уменьшением роли прямой: в средних широтах летом она составляет 41%, а зимой 73 % общего прихода радиации. Ее доля зависит от высоты Солнца: в высоких широтах она равна 30 %, в полярных 70 % от всей радиации.
В целом же (с участием суточного хода высоты Солнца и облачности неба) на рассеянную радиацию приходится около 25 % всего потока солнечных лучей.
На земную поверхность, таким образом, поступает прямая и рассеянная радиация. В совокупности прямая и рассеянная радиация образуют суммарную радиацию, которая определяет тепловой режим тропосферы.
Поглощая и рассеивая радиацию, атмосфера значительно ее ослабляет. Величина ослабления зависит от коэффициента прозрачности, показывающего, какая доля радиации доходит до земной поверхности. Если бы тропосфера состояла бы только из газов, то коэффициент прозрачности был бы равен 0,9, то есть она бы пропускала бы 90 % идущей к Земле радиации. Но в воздухе всегда присутствуют аэрозоли, снижающие коэффициент прозрачности до 0,7 – 0,8. Прозрачность атмосферы изменяется вместе с изменением погоды.
Так как плотность воздуха падает с высотой, то слой газа, пронизываемого лучами, нельзя выражать в км толщины атмосферы. В качестве единицы измерения принята оптическая масса, равная мощности слоя воздуха при вертикальном падении лучей.
Ослабление радиации в тропосфере легко наблюдать в течение суток. Когда Солнце находится около горизонта, то его лучи пронизывают несколько оптических масс. Их интенсивность при этом так ослабевает, что на Солнце можно смотреть незащищенным глазом. С поднятием Солнца уменьшается число оптических масс, которые проходят его лучи, и интенсивность лучей возрастает.
Степень ослабления солнечной радиации в атмосфере выражается формулой Ламберта:
Ii = I0 pm, где
Ii – радиация, достигшая земной поверхности,
I0 – солнечная постоянная,
p – коэффициент прозрачности,
m – число оптических масс.
8.7. Солнечная радиация у земной поверхности
Количество лучистой энергии, приходящее на единицу земной поверхности, зависит прежде всего от угла падения солнечных лучей. На одинаковые площади на экваторе, в средних и высоких широтах приходится различное количество радиации.
Солнечная инсоляция (освещение) сильно ослабляется облачностью. Большая облачность экваториальных и умеренных широт и малая облачность тропических широт вносят значительные коррективы в зональное распределение лучистой энергии Солнца.
Распределение солнечного тепла по земной поверхности показывается на карте суммарной солнечной радиации. Как показывают карты распределения суммарной солнечной радиации, наибольшее количество солнечного тепла – от 7 530 до 9 200 МДж/м2 (180-220 ккал/см2) получают тропические широты. Экваториальные широты из-за большой облачности получают тепла несколько меньше, 4 185 – 5 860 МДж/м2 (100-140 ккал/см2).
От тропических широт к умеренным радиация уменьшается. На островах Арктики она составляет не более 2 510 МДж/м2 (60 ккал/см2) в год. Распределение радиации по земной поверхности имеет зонально-региональный характер. Каждая зона распадается на отдельные районы (регионы), несколько отличающиеся один от другого.