Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
урок 2 11 клас.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
412.67 Кб
Скачать

5. Работа электрического поля

Темой сегодняшнего урока будет ещё одна характеристика электрического поля – энергетическая. Эта характеристика называется потенциалом, и она непосредственно связана с работой электрического поля по перемещению заряда. Но для начала вспомним другую характеристику поля – силовую характеристику, напряженность:

для произвольного поля в некоторой точке пространства напряженность равна:

а для поля точечного заряда:

Теперь вспомним из курса механики, как вычислить работу, совершаемую над телом – в нашем случае электрическое поле совершает работу по перемещению заряда:

учитывая:

Для простоты рассмотрим случай однородного электрического поля, которое можно получить между двумя заряженными пластинами. И пусть положительный заряд изначально находится вблизи положительной пластинки, тогда, естественно, он начнёт под действием кулоновских сил движение в сторону отрицательной пластинки (см. рис. 1).

Рис. 1

Для этого случая из-за параллельности векторов силы и перемещения выражение для работы принимает следующий вид:

где d- расстояние между пластинами.

Более того, даже для любого произвольного движения заряда от пластины «+» к пластине «-» будет определяться по такой же формуле (см рис. 2).

Рис. 2

Любую прямую или кривую можно представить в виде большого числа маленьких «ступенек». А, как известно, если сила перпендикулярна перемещению, работа на таких участках равна нулю, так как . То есть сумма работ на «ступеньках» равна сумме работ на их горизонтальных частях, то есть исходному значению.

Также нам известно, что потенциальная энергия заряда уменьшается по мере прохождения, поэтому работа электрического поля имеет вид:

6. Потенциал

Теперь пришло время ввести новую энергетическую характеристику поля – потенциал.

Потенциал – физическая величина, показывающая отношение потенциальной энергии заряда в некоторой точке пространства к величине этого заряда:

Так как потенциальная энергия заряда прямо пропорциональна величине заряда, то потенциал от величины заряда не зависит:

Единица измерения потенциала – вольт (В) :

Потенциал некоторой точки пространства можно определить как работу электрического поля по переносу единичного заряда из бесконечности в эту точку. В общем же виде связь потенциала с работой можно задать через ввод электрического напряжения:

Полученная зависимость справедлива вдоль некоторой силовой линии, и здесь – расстояние между двумя точками на одной силовой линии.

Зависимость потенциала поля точечного заряда от расстояния имеет похожий вид с аналогичной зависимостью для напряженности, однако убывает медленнее – не пропорционально квадрату, а пропорционально первой степени: