
- •Лекция 1. Введение в начертательную геометрию. Методы проецирования
- •1.1 Предмет начертательной геометрии
- •1.2 Из истории начертательной геометрии
- •1.3 Виды проецирования
- •1.4 Проекции с числовыми отметками
- •Лекция 2. Точка в ортогональной системе координат
- •2.1 Метод Монжа
- •2.2 Проекция точки
- •2.3 Точка в ортогональной системе двух плоскостей проекций
- •2.4 Точка в ортогональной системе трех плоскостей проекций
- •2.5 Взаимное расположение точек
- •Лекция 3. Прямая линия
- •3.1 Прямая линия и способы ее графического задания
- •3.2 Положение прямой линии относительно плоскостей проекций
- •3.3 Следы прямой линии
- •Лекция 4. Взаимное расположение объектов
- •4.1 Взаимное расположение точки и прямой
- •4.2 Взаимное расположение прямых Деление отрезка прямой в заданном соотношении
- •Определение длины отрезка прямой и углов наклона прямой к плоскостям проекций
- •Взаимное расположение двух прямых
- •1. Параллельные прямые линии.
- •2. Пересекающиеся прямые.
- •3. Скрещивающиеся прямые
- •4.3 Проекции плоских углов
- •Лекция 5. Плоскости
- •5.1 Способы задания плоскостей
- •5.2 Положение плоскости относительно плоскостей проекций
- •5.3 Следы плоскости
- •Лекция 6. Взаимное расположение точки, прямой и плоскости
- •6.1 Взаимное расположение прямой и плоскости
- •6.2 Главные линии плоскости
- •6.3 Взаимное расположение точки и плоскости
- •6.4 Взаимное расположение плоскостей
- •Лекция 7. Многогранники
- •7.1 Виды Многогранников
- •7.2 Пересечение плоскости с многогранником
- •7.3 Пересечение прямой линии с многогранником
- •7.4 Взаимное пересечение многогранников
- •Лекция 8. Кривые линии
- •8.1 Плоские кривые линии
- •2. Гипербола:
- •3. Эллипс:
- •7.2 Построение касательной и нормали к плоской кривой
- •1. Проведем окружности а1, а2, а3, а4, разных радиусов с центром в точке а;
- •8.3 Кривизна кривой линии
- •8.4 Свойства ортогональных проекций кривой
- •Пространственные кривые линии
- •Лекция 9. Поверхность
- •9.1 Образование и задание поверхности на чертеже
- •9.2 Взаимное расположение линии и поверхности
- •Лекция 10. Принадлежность точки поверхности
- •10.1 Взаимное расположение плоскости и поверхности
- •10.2 Взаимное пересечение поверхностей
- •Пересечение конуса и призмы
- •Пересечение полусферы и эллиптического цилиндра
- •10.3 Частные случаи пересечения поверхностей второго порядка
- •Поверхность, касательная к поверхности
- •Лекция 11. Развертка поверхности и алгоритмы решения задач начертательной геометрии
- •11.1 Развертка поверхности многогранников
- •11.2 Развертка цилиндрической и конической поверхностей
- •11.3 Алгоритмы решения задач начертательной геометрии
- •Методы преобразования ортогональных проекций
- •Лекция 12. Метод вспомогательных секущих поверхностей посредников
- •12.1 Метод вспомогательных секущих плоскостей
- •12.2 Метод вспомогательных секущих сфер
- •12.3 Аксонометрические проекции
- •Литература
3.3 Следы прямой линии
Следом прямой линии называется точка (рис. 26), в которой прямая пересекается с плоскостью проекций (так как след - точка, принадлежащая одной из плоскостей проекций, то одна из её координат должна быть равна нулю).
Горизонтальный след - М (zM=0)-точка пересечения прямой с горизонтальной плоскостью проекций.
Фронтальный след - N (yN=0)- точка пересечения прямой с фронтальной плоскостью проекций.
Профильный след - Т (xТ=0)- точка пересечения прямой с профильной плоскостью проекций.
а) модель б) эпюр
|
|
|
Рисунок 26.Следы прямой линии в системе трех плоскостей проекций, порядок построения эпюра
Следы прямой являются точками частного положения. Одноименные проекции следа прямой совпадают с самим следом, а другие проекции лежат на осях. Например, фронтальный след прямой N2ºN, а N1 лежит на оси x, N3 - на оси z. Отмеченные особенности в расположении следов проекций позволяет сформулировать следующие правила:
1. Для построения горизонтального следа М прямой необходимо продолжить ее фронтальную проекцию до пересечения с осью 0x и в этой точке восстановить перпендикуляр к оси до пересечения с горизонтальной проекцией прямой.
2. Для построения фронтального следа N прямой нужно из точки пересечения горизонтальной проекции её с осью 0x восстановить перпендикуляр до пересечения с фронтальной проекцией прямой.
С помощью этих правил найдены на эпюре следы прямой а (рис.27) . Здесь же показаны совпавшие проекции точки А, принадлежащей рассматриваемой прямой. Особенность этой точки в том, что она равноудалена от плоскостей проекций, то есть находятся в биссекторной плоскости S2бис.
Следы прямой, являются точками, в которых прямая переходит из одного октанта в другой, позволяют отмечать её видимость. Видимой частью прямой будет та, которая расположена в пределах первого октанта.
|
|
|
|
|
|
Рисунок 27. Нахождение горизонтального и фронтального следов прямой линии
Лекция 4. Взаимное расположение объектов
4.1 Взаимное расположение точки и прямой
Если точка принадлежит прямой, то её проекции должны принадлежать одноименным проекциям этой прямой (аксиома принадлежности точки прямой). Из четырех предложенных на рисунке 28 точек, только одна точка С лежит на прямой АВ.
а) эпюр б) модель
|
|
|
|
Рисунок 28. Взаимное расположение точки и прямой
В тех случаях, когда точка и прямая лежат в плоскости уровня (параллельной какой-либо из плоскостей проекций П1, П2 и П3), то вопрос о взаимном расположении прямой и точки решается при построении проекций на плоскость соответственно П1, П2 или П3. Например, прямая АВ и точка К лежат в плоскости параллельной профильной плоскости проекций (рис.29).
а) эпюр б) модель
|
|
|
|
|||
|
|
|
||||
|
|
Рисунок 29. Точка и прямая, расположенные в профильной плоскости уровня
Из свойств параллельного проецирования известно, что если точка делит отрезок прямой в данном отношении, то проекции этой точки делят одноименные проекции прямой в том же соотношении.
Зная это условие можно определить принадлежность точки К прямой АВ:
А2К2 /К2В2 ¹А1К1/К1В1 Þ КÏАВ