- •Информатика как наука и вид практической деятельности.
- •Измерение информации.
- •Системы счисления.
- •Кодирование информации.
- •Самоконтролирующиеся коды
- •Самокорректирующиеся коды
- •Иллюстрация
- •Информационная энтропия. Формула Клода Шеннона
- •Кодирование графической информации
- •Кодирование звуковой информации
- •Алгоритмы и их свойства.
- •Алгоритм, его свойства. Формализация понятия алгоритма.
- •Всякий алгоритм может быть реализован машиной Тьюринга.
- •Пример алгоритма
- •Поиск с барьером
- •Бинарный (двоичный) поиск
- •Алгоритм
- •Сортировка методом Шелла
- •Алгоритм сортировки Шелла:
- •Системное программное обеспечение
- •Прикладное программное обеспечение
- •Принцип работы эвм рассматривается на примере персонального компьютера.
Поиск с барьером
Существует модификация алгоритма последовательного поиска, которая ускоряет поиск. Эта модификация является небольшим усовершенствованием рассмотренного алгоритма поиска.
Идея поиска с барьером состоит в том, чтобы не проверять каждый раз в цикле условие, связанное с границами множества. Это можно обеспечить, установив в данном множестве так называемый барьер. Под барьером понимается любой элемент, который удовлетворяет условию поиска. Тем самым будет ограничено изменение индекса.
Выход из цикла, в котором теперь остается только условие поиска, может произойти либо на найденном элементе, либо на барьере. Существует два способа установки барьера: дополнительным элементом или вместо крайнего элемента массива.
Заметим, что поиск с барьером работает быстрее, но временная сложность алгоритма остается такой же O(n), где n – количество элементов множества. Гораздо больший интерес представляют методы, не только работающие быстро, но и реализующие алгоритмы с меньшей сложностью.
Бинарный (двоичный) поиск
Бинарный (двоичный, дихотомический) поиск – это поиск заданного элемента на упорядоченном множестве, осуществляемый путем неоднократного деления этого множества на две части таким образом, что искомый элемент попадает в одну из этих частей. Поиск заканчивается при совпадении искомого элемента с элементом, который является границей между частями множества или при отсутствии искомого элемента.
Бинарный поиск применяется к отсортированным множествам и заключается в последовательном разбиении множества пополам и поиска элемента только в одной половине на каждой итерации.
Таким образом, идея этого метода заключается в следующем. Поиск нужного значения среди элементов упорядоченного массива (по возрастанию или по убыванию) начинается с определения значения центрального элемента этого массива. Значение данного элемента сравнивается с искомым значением и в зависимости от результатов сравнения предпринимаются определенные действия. Если искомое и центральное значения оказываются равны, то поиск завершается успешно. Если искомое значение меньше центрального или больше, то формируется массив, состоящий из элементов, находящихся слева или справа от центрального соответственно. Затем поиск повторяется в новом массиве
В процессе работы алгоритма бинарного поиска размер фрагмента, где этот поиск должен продолжаться, каждый раз уменьшается примерно в два раза. Это обеспечивает сложность алгоритма пропорциональную O(log n), где n – количество элементов множества.
12
Сортировка простыми обменами, сортиро́вка пузырько́м (англ. bubble sort) — простой алгоритм сортировки. Для понимания и реализации этот алгоритм — простейший, но эффективен он лишь для небольших массивов. Сложность алгоритма: O(n²).
Алгоритм считается учебным и практически не применяется вне учебной литературы, вместо него на практике применяются более эффективные алгоритмы сортировки. В то же время метод сортировки обменами лежит в основе некоторых более совершенных алгоритмов, таких как шейкерная сортировка, пирамидальная сортировка и быстрая сортировка.
Алгоритм состоит из повторяющихся проходов по сортируемому массиву. За каждый проход элементы последовательно сравниваются попарно и, если порядок в паре неверный, выполняется обмен элементов. Проходы по массиву повторяются N-1 раз или до тех пор, пока на очередном проходе не окажется, что обмены больше не нужны, что означает — массив отсортирован. При каждом проходе алгоритма по внутреннему циклу, очередной наибольший элемент массива ставится на своё место в конце массива рядом с предыдущим «наибольшим элементом», а наименьший элемент перемещается на одну позицию к началу массива («всплывает» до нужной позиции как пузырёк в воде, отсюда и название алгоритма).
Сортировка выбором (Selection sort) — алгоритм сортировки. Может быть как устойчивый, так и неустойчивый.
Шаги алгоритма:
находим номер минимального значения в текущем списке
производим обмен этого значения со значением первой неотсортированной позиции (обмен не нужен, если минимальный элемент уже находится на данной позиции)
теперь сортируем хвост списка, исключив из рассмотрения уже отсортированные элементы
Для реализации устойчивости алгоритма необходимо в пункте 2 минимальный элемент непосредственно вставлять в первую неотсортированную позицию, не меняя порядок остальных элементов.
Сортировка вставками — примитивный алгоритм сортировки с высокой вычислительной сложностью: O(n²).
Сортировка простыми вставками в чем-то похожа на вышеизложенные методы.
Аналогичным образом делаются проходы по части массива, и аналогичным же образом в его начале "вырастает" отсортированная последовательность...
Однако в сортировке пузырьком или выбором можно было четко заявить, что на i-м шаге элементы a[0]...a[i] стоят на правильных местах и никуда более не переместятся. Здесь же подобное утверждение будет более слабым: последовательность a[0]...a[i] упорядочена. При этом по ходу алгоритма в нее будут вставляться (см. название метода) все новые элементы.
Плюсы:
эффективен на небольших наборах данных, на наборах данных до десятков элементов может оказаться лучшим;
эффективен на наборах данных, которые уже частично отсортированы;
это устойчивый алгоритм сортировки (не меняет порядок элементов, которые уже отсортированы);
может сортировать список по мере его получения;
использует O(1) временной памяти, включая стек.
может работать значительно быстрее за счёт бинарного поиска
Минусы:
Очень высокая вычислительная сложность алгоритма O(n²) (при использовании стандартного алгоритма).
На каждом шаге алгоритма мы выбираем один из элементов входных данных и вставляем его на нужную позицию в уже отсортированном списке, до тех пор, пока набор входных данных не будет исчерпан. Метод выбора очередного элемента из исходного массива произволен; может использоваться практически любой алгоритм выбора. Обычно (и с целью получения устойчивого алгоритма сортировки), элементы вставляются по порядку их появления во входном массиве. Приведенный ниже алгоритм использует именно эту стратегию выбора.
13
Быстрая сортировка Хоара (с опорным элементом) (англ. quicksort), часто называемая qsort по имени реализации в стандартной библиотеке языка Си — широко известный алгоритм сортировки, разработанный английским информатиком Чарльзом Хоаром во время его работы в МГУ в 1960 году. Один из самых быстрых известных универсальных алгоритмов сортировки массивов (в среднем O(n log n) обменов при упорядочении n элементов); из-за наличия ряда недостатков на практике обычно используется с некоторыми доработками.
QuickSort является существенно улучшенным вариантом алгоритма сортировки с помощью прямого обмена (его варианты известны как «Пузырьковая сортировка» и «Шейкерная сортировка»), известного, в том числе, своей низкой эффективностью. Принципиальное отличие состоит в том, что в первую очередь производятся перестановки на наибольшем возможном расстоянии и после каждого прохода элементы делятся на две независимые группы. Любопытный факт: улучшение самого неэффективного прямого метода сортировки дало в результате один из наиболее эффективных улучшенных методов.
Общая идея алгоритма состоит в следующем:
Выбрать из массива элемент, называемый опорным. Это может быть любой из элементов массива.
Сравнить все остальные элементы с опорным и переставить их в массиве так, чтобы разбить массив на три непрерывных отрезка, следующие друг за другом — «меньшие опорного», «равные» и «большие».
Для отрезков «меньших» и «больших» значений выполнить рекурсивно ту же последовательность операций, если длина отрезка больше единицы.
На практике массив обычно делят не на три, а на две части, например, «меньшие опорного» и «равные и большие». Такой подход в общем случае эффективнее, так как упрощает алгоритм разделения (см. ниже).
Хоар разработал этот метод применительно к машинному переводу; словарь хранился на магнитной ленте, и сортировка слов обрабатываемого текста позволяла получить их переводы за один прогон ленты, без перемотки её назад. Алгоритм был придуман Хоаром во время его пребывания в Советском Союзе, где он обучался в Московском университете компьютерному переводу и занимался разработкой русско-английского разговорника.
