- •Информатика как наука и вид практической деятельности.
- •Измерение информации.
- •Системы счисления.
- •Кодирование информации.
- •Самоконтролирующиеся коды
- •Самокорректирующиеся коды
- •Иллюстрация
- •Информационная энтропия. Формула Клода Шеннона
- •Кодирование графической информации
- •Кодирование звуковой информации
- •Алгоритмы и их свойства.
- •Алгоритм, его свойства. Формализация понятия алгоритма.
- •Всякий алгоритм может быть реализован машиной Тьюринга.
- •Пример алгоритма
- •Поиск с барьером
- •Бинарный (двоичный) поиск
- •Алгоритм
- •Сортировка методом Шелла
- •Алгоритм сортировки Шелла:
- •Системное программное обеспечение
- •Прикладное программное обеспечение
- •Принцип работы эвм рассматривается на примере персонального компьютера.
Кодирование графической информации
Создавать и хранить графические объекты в компьютере можно двумя способами – как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.
Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора. Объем растрового изображения определяется как произведение количества точек и информационного объема одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объем одной точки равен 1 биту, так как точка может быть либо черной, либо белой, что можно закодировать двумя цифрами – 0 или 1.
Для кодирования 8 цветов необходимо 3 бита; для 16 цветов – 4 бита; для 6 цветов – 8 битов (1 байт) и т.д.
Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами. Для каждой линии указываются ее тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки. Кодирование векторных изображений выполняется различными способами в зависимости от прикладной среды. В частности, формулы, описывающие отрезки кривых, могут кодироваться как обычная буквенно-цифровая информация для дальнейшей обработки специальными программами.
Кодирование звуковой информации
Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).
В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие участки, причем для каждого такого участка устанавливается определенная величина амплитуды.Таким образом, непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность уровней громкости.
При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, т.е. от частоты дискретизации. Чем больше количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.
Для представления чисел (данных) в памяти ЭВМ выделяется определенное количество битов. В отличие от нумерации разрядов числа биты в байте нумеруются слева направо, начиная с 0. Каждый байт в памяти ЭВМ имеет свой порядковый номер, который называется абсолютным адресам байта. Байт является основной единицей хранения данных, это наименьшая адресуемая единица обмена информации в оперативной памяти ЭВМ, то есть минимальная единица обмена информации, имеющая адрес в памяти ЭВМ.
Последовательность нескольких смежных байтов образует поле данных. Количество байтов поля называется длиной поля, а адрес самого левого байта поля - адресом поля. Обработка информации может вестись либо побайтно, либо полями данных (или форматом данных). Форматы данных показывают, как информация размещается в оперативной памяти и регистрах ЭВМ. Форматы данных различают по длине, типу данных и структуре, а каждое значение, содержащееся в байте может быть интерпретировано по разному:
кодированное представление символа внешнего алфавита (при вводе и выводе данных);
целым знаковым или беззнаковым числом (при внутреннем представлении чисел в памяти ЭВМ);
частью команды или более сложной единицы данных и т.д.
В ЭВМ существуют следующие формы представления целых чисел: полуслово (байт), слово (два последовательных байта, пронумерованных слева направо от 0 до 15), двойное слово (4 байта).
В ЭВМ для представления чисел используется естественная (представление числа с фиксированной точкой) и полулогарифмическая (представление числа с плавающей точкой) формы.
Представление чисел в форме с фиксированной точкой.
В используемых представлениях чисел “запятая” или “десятичная точка” - это условный символ, предназначенный для разделения целой и дробной частей числа. Запятая имеет, следовательно, точный математический смысл, независимо от используемой системы счисления, и ее положение нисколько не меняет алгоритм вычислений или форму результата.
Если обрабатываемые числа имеют величину одного порядка, можно фиксировать позицию запятой или точки (такое представление называется представлением с фиксированной точкой). Тогда при обработке чисел в машине нет необходимости учитывать положение (представлять) десятичной точки. И тогда ее положение на уровне программы считается одинаковым и учитывается только в результате.
Представление чисел в форме с плавающей точкой.
Действительные числа в математике представляются конечными или бесконечными дробями. Однако в компьютере числа хранятся в регистрах и ячейках памяти, которые являются последовательностью байтов с ограниченным количеством разрядов. Следовательно, бесконечные или очень длинные числа усекаются до некоторой длины и в компьютерном представлении выступают как приближенные.
Для представления действительных чисел, как очень маленьких, так и очень больших, удобно использовать форму записи чисел в виде произведения:
А = ± М·n± p
где n - основание системы счисления;
M – мантисса;
р – целое число, называемое порядком (определяет местоположение десятичной точки в числе).
Такой способ записи чисел называется представлением числа с плавающей точкой.
Пример: -245,62=-0,24565·103, 0,00123=0,123·10-2=1,23·10-3=12,3·10-4
7
