- •Технікум промислової автоматики
- •Вступ. Основні поняття і співвідношення в електричних колах.
- •Електричні схеми, елементи схем.
- •Закон Ома для ділянки кола.
- •Напруга на клемах джерела.
- •Енергетичні співвідношення. Закон Джоуля–Ленца. Баланс потужностей.
- •Режими роботи електричних кіл. Розрахунок кіл постійного струму. Режими роботи електричних кіл.
- •Режими холостого ходу і короткого замикання.
- •Точки характерних режимів на зовнішній характеристиці джерела.
- •Джерело ерс та джерело струму.
- •Розрахунок кіл постійного струму. Способи з’єднання споживачів
- •З’єднання елементів живлення.
- •Послідовне з’єднання елементів.
- •Паралельне з’єднання елементів.
- •З мішане з’єднання елементів.
- •Розрахунок простих кіл електричного струму.
- •Розрахунок складних кіл. Закони Кірхгофа.
- •Перетворення трикутника опорів в еквівалентну зірку.
- •Методи розрахунку складних електричних кіл. Використання законів Кірхгофа для розрахунку складних кіл.
- •Метод суперпозиції.
- •Метод контурних струмів.
- •Метод вузлових напруг.
- •Зауваження щодо аналогій з фізичними системами іншої природи.
- •Метод еквівалентного генератора.
- •Опір r схеми визначається методом еквівалентних перетворень схеми до загального опору відносно клем a, b при відключеному навантаженні і заморочених внутрішніх ерс.
- •Нелінійні опори та перехідні процеси. Нелінійні опори в колах постійного струму. Основні поняття.
- •Графічний метод розрахунку простих кіл з нелінійними опорами.
- •Коло з двома послідовними нелінійними опорами.
- •К оло з двома паралельними нелінійними опорами.
- •Змішане з’єднання нелінійних опорів
- •П риклад розрахунку схеми стабілізації струму.
- •Перехідні процеси в електричних колах Закони комутації
- •Загальні принципи аналізу перехідних процесів
- •Основні поняття змінного струму Змінний струм Передмова
- •Основні поняття
- •Діюче (ефективне, середньоквадратичне) значення.
- •Середнє значення змінного струму.
- •Зображення синусоїдальних величин векторами Векторна діаграма
- •Елементи кіл змінного струму
- •Активний опір на змінному струмі.
- •Індуктивність на змінному струмі. Котушка індуктивності.
- •Котушка індуктивності на змінному струмі
- •Конденсатор на змінному струмі.
- •Конденсатор на змінному струмі
- •Символічний метод
- •Нагадування про комплексні числа Форми запису комплексних чисел
- •Дії над комплексними числами
- •Уявлення параметрів електричного змінного струму через комплексні числа
- •Аналіз кіл синусоїдального струму. Закони Кірхгофа
- •Опір і провідність в комплексній формі.
- •Активна, реактивна і повна потужність.
- •Розрахунок складних кіл змінного струму.
- •Значення cos .
- •Електричні коливання. Коливальний контур.
- •Резонанс напруг.
- •Резонанс струмів.
- •Трифазні кола. Трифазна система ерс. Передмова
- •Устрій генератора трифазного струму
- •Н езв’язана система трифазних струмів
- •Основні схеми з’єднання в трифазних колах з ’єднання за схемою «зірка»
- •Потужність трифазного кола.
- •Розрахунок трифазного кола. Трипровідна система із симетричним навантаженням.
- •Чотирипровідна система при несиметричному навантаженні.
- •З’єднання за схемою “трикутник” з’єднання споживачів за схемою “трикутник”.
- •З’єднання обмоток генератора за схемою «трикутник».
- •З’єднання «зірка – трикутник»
- •З’єднання «трикутник – трикутник»
- •З’єднання «трикутник – зірка»
- •Трансформатори. Трансформатори
- •Трансформатори. Призначення та область використання
- •Устрій однофазного трансформатора
- •Режими роботи трансформатора
- •Холостий хід трансформатора
- •Н авантажений режим трансформатора. Робота трансформатора.
- •Рівняння намагнічуючих сил трансформатора.
- •Векторна діаграма навантаженого трансформатора.
- •Схеми заміщення.
- •Особливості використання трансформаторів. Приклад використання схеми заміщення для спрощення розрахунків
- •Зміна вторинної напруги трансформатора
- •Трифазні трансформатори
- •Устрій трифазного трансформатора
- •Групи з'єднання обмоток трифазного трансформатора.
- •Навантажувальна здатність трансформатора Номінальні параметри трансформатора
- •Дослід короткого замикання
- •Дослід холостого ходу
- •Коефіцієнт корисної дії (к.К.Д.) трансформатора.
- •Автотрансформатори
- •Асинхронні електричні машини.
- •Принцип дії асинхронної машини
- •Магнітне поле, що обертається
- •Режими роботи асинхронної машини
- •Конструкція ротора
- •Механічні характеристики асинхронного двигуна.
- •Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
- •Асинхронний лінійний двигун (лад).
- •Однофазний асинхронний двигун.
- •Синхронні генератори. Устрій і принцип дії синхронних генераторів. Основні частини синхронної машини.
- •Отримання синусоїдальної ерс.
- •Багатополюсні генератори.
- •Робочий процес синхронного генератора Холостий хід.
- •Реакція якоря.
- •Зовнішня і регулювальна характеристики.
- •Синхронний двигун
- •Принцип роботи синхронного двигуна.
- •Машини постійного струму.
- •Устрій та принцип дії генератора постійного струму
- •Магнітна система.
- •Ерс генератора.
- •Збудження генератора.
- •Генератор з паралельним збудженням.
- •Реакція якоря.
- •К омутація.
- •Зовнішня характеристика.
- •Виникнення електромагнітного обертаючого моменту.
- •Загальні відомості про електричні вимірювання Метрологія й метрологічне забезпечення
- •Номенклатура основних величин, що підлягають вимірюванням в електротехніці, електроенергетиці й електроніці
- •Номенклатура параметрів середовища життєдіяльності, що підлягають вимірюванням
- •Засоби вимірювань, різновиди
- •Характеристики якості результатів вимірювань
- •Малюнок 1 – Інтервали невизначеності погрішності (ліворуч) та істинного значення вимірюваної величини (праворуч).
- •Аналогові вимірювальні прилади. Загальні характеристики
- •Прилади магнітоелектричної системи
- •Прилади магнітоелектричної системи, принцип дії, варіанти застосування.
- •Прилади електродинамічної системи
- •Малюнок 2 – Прилади електродинамічної системи. Принцип дії, позначення, варіанти застосування.
- •Прилади феродинамічної системи
- •Малюнок 3 – Принцип дії приладу феродинамічної системи.
- •Прилади електромагнітної системи
- •Малюнок 4 – Принцип дії приладу електромагнітної системи.
- •Прилади електростатичної системи
- •Малюнок 5 – Принцип дії приладу електростатичної системи.
- •Прилади індукційної системи
- •Малюнок 6 – Прилад індукційної системи (лічильник електричної енергії). Принцип дії, позначення, схема включення.
- •Засоби розширення меж вимірювання
- •Малюнок 7 – з'єднання амперметра із шунтом.
- •Додаткові опори
- •Вимірювальні трансформатори струму
- •Малюнок 8 – Застосування трансформатора струму.
- •Вимірювальні трансформатори напруги
- •Правило вибору меж вимірювання
- •Вимірювання у трифазних колах змінного струму
- •Вимірювання лінійних струмів і напруг у трифазному трипроводному колі
- •Малюнок 9 – Вимірювання лінійних струмів і напруг у трифазних трипроводних ланцюгах.
- •Вимірювання активної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 10 – Включення ватметра й лічильника електричної енергії для вимірювань у симетричних трифазних ланцюгах з доступною й недоступною нейтралю.
- •Вимірювання реактивної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 11 – До вимірювання реактивної потужності й енергії.
- •Малюнок 12 – Схеми включення одного приладу для вимірювання реактивної електричної потужності й енергії в симетричному трифазному ланцюгу.
- •Вимірювання активної електричної потужності й енергії в трифазному колі за допомогою двох приладів
- •Малюнок 13 – Варіанти включення двох ватметрів й (або) лічильників активної потужності й електричної енергії в трифазних ланцюгах.
- •Мостові методи вимірювання
- •Мости постійного струму Мости постійного струму в рівноважному режимі
- •Малюнок 14 – Одинарний і подвійний мости постійного струму.
- •Мости постійного струму в нерівноважному режимі
- •Малюнок 15 – Мости постійного струму в нерівноважному режимі.
- •Мости змінного струму Умови рівноваги мостів змінного струму
- •Малюнок 16 – Мости змінного струму.
- •Міст змінного струму для вимірювання ємності конденсатора
- •Малюнок 17 – Схеми заміщення реального конденсатора й індуктивності.
- •Міст змінного струму для вимірювання індуктивності котушки
- •Метрологічні характеристики мостів
- •Література
Магнітна система.
Н
а
рисунку схематично показана магнітна
система двополюсної машини постійного
струму.
Як зазначалось, нерухома станина (1)
виготовляється з
литої сталі. До внутрішньої поверхні
станини прикріплені
осердя (2) електромагнітів. На осердя
надіті котушки (3) з
мідного ізольованого проводу. Для
утримання котушок осердя забезпечуються
полюсними наконечниками (4). Форма
полюсних наконечників забезпечує більш
сприятливий розподіл магнітних лінії
в повітряному зазорі .
Котушки електромагнітів, що утворюють обмотку збудження, живляться постійним струмом і створюють незмінний у часі і в просторі магнітний поток Ф. Магнітні лінії цього потоку вийдуть з північного полюса, проходять через циліндричний якір (5), потім входять в південний полюс і замикаються через станину по двох паралельних гілках.
П
ринцип
з’єднання
стержнів між
собою, а також роль колектора пояснимо
на
прикладі
найпростішого якоря з вісьма стержнями
(див.
рисунок).
При
обертанні
якоря в магнітному полі стержні
перетинають
магнітні лінії і в них індукуються ЕРС.
Напрями
цих ЕРС, знайдені
за правилом правої руки, вказані на
рисунку
(точка – напрям
ЕРС із
площини малюнка; хрестик – в площину
малюнка).
ЕРС,
індукована
в
кожному стержні
якоря, при
переході від полюса N
до полюса
S
змінює свій напрям
на протилежне.
Для отримання на клемах генератора досить великої напруги стержні обмотки повинні бути сполучені між собою так, щоб індуковані в них ЕРС сумувались. У зразку, що розглядається стержні сполучені через два з третім: стержень 1 з’єднаний зі стержнем 4, стержень 4 – зі стержнем 7, стержень 7 – зі стержнем 2, стержень 2 – зі стержнем 5, стержень 5 – зі стержнем 8, стержень 8 – зі стержнем 3, стержень 3 – зі стержнем 6 і стержень 6 – зі стержнем 1. Відстань між кожними двома стержнями, що з’єднуються, один з одним, потрібно вибирати так, щоб в обмотку увійшли всі стержні, розташовані на якорі, і щоб утворилось замкнене коло (на рисунку останній стержень 6 замикається зі стержнем 1, з якого був початий обхід обмотки).
Перемички між стержнями 1 – 4, 7 – 2, 5 – 8 і 3 – 6, що розташовані на передньому торці якоря, з’єднані відповідно з колекторними пластинами А, В, С, D.
Р
озглядаючи
наступний рисунок (а), (тут
обмотка якоря представлена в розгорненому
на площині вигляді), можна встановити,
що в обмотці якоря утворилися дві
паралельні вітки I
і II.
У
вітці I
послідовно включені
стержні 1, 6, 3 і 8 з сумарною ЕРС еI
= e1
+ e6
+ e3
+ e8,
а у вітці II
послідовно включені
стержні 4, 7, 2 і
5
з сумарною ЕРС еII
= e4
+ e7
+ e2
+ e5.
ЕРС еI
і еII
однакові за величиною еI
= еII
= Е
(оскільки вони утворюються у симетрично
розташованих відносно магнітного поля
провідниках 1 і 4, 6 і 7, 3 і 2, 8 і 5) і направлені
назустріч одна одній, тому струм
в колі обмотки якоря не виникає.
Напруга між пластинами колектора А і С (рис. а) утворює ЕРС віток Е.
При повороті якоря, наприклад на 90°, обмотка якоря знову утворить дві вітки I і II (рисунок б); в кожну з них будуть входити вже інші стержні, але індукована в кожній вітці сумарна ЕРС збереже своє колишнє значення Е. Напруга між колекторними пластинами В і D залишиться незмінною.
Приєднання споживачів до генератора здійснюється через нерухомі щітки М1 і М2, прилеглі до колектора1.
Розташування щіток вибирають так, щоб напруга між ними мала найбільшу можливу величину, рівну сумарній ЕРС Е кожної з паралельних віток якірної обмотки. Щітки утримуються за допомогою спеціальних утримувачів.
Якщо клеми ( + ) і ( – ) працюючого генератора замкнути на зовнішній опір Rн, то у зовнішньому колі і вітках якірної обмотки почне протікати постійний струм І.
