Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭТЭИ_консп_укр.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
3.34 Mб
Скачать

Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням

Ре = Р + Рм + Р + Рмех = Р + Рм + Р + Рмех + Р.

Тут:

  • Ре = 3U1I1cos  1 – потужність, що споживається двигуном з мережі;

  • Р = 3 I12R1 – електричні втрати в обмотці статора (втрати в міді);

  • Рм – магнітні втрати в сталі статора;

Магнітні втрати в роторі пропорційні частоті f2, дуже малі і ними нехтують.

  • Р = 3 I22R2 – електричні втрати в обмотці ротора (втрати в міді);

  • Рмех – повна механічна потужність, що розвивається двигуном;

  • Рмех – механічні втрати в двигуні;

  • Р – корисна потужність на валу двигуна.

Корисна механічна потужність двигуна Р менша за потужність Рмех на величину механічних втрат в двигуні: Р = Рмех – Рмех.

Величина Ре м = Ре – Р – Рм уявляє собою електромагнітну потужність двигуна, що передається від статора до ротору через обертове магнітне поле.

В заводському паспорті, на щитку двигуна і в каталогах вказується не споживана з мережи електрична потужність Ре, а корисна механічна потужність Рн на валу двигуна при номінальному режимі роботи.

Асинхронний лінійний двигун (лад).

Лінійний електродвигун винайшов в 1902 р. англійський інженер Трамбета. В ЛАД електроенергія перетворюється безпосередньо в механічну енергію прямолінійного переміщення робочого органу машин і механізмів. В цих агрегатах відсутня громіздка проміжна механічна ланка, що перетворює обертовий рух в поступовий. Крім того, ці двигуни бесконтактні, тобто без механічних зв’язків між статором і вторинним елементом двигуна.

ЛАД використовуються в крнвейєрних лініях, в виконавчих елементах автоматики, у високошвидкісному надземному електротранспорті (швидкість понад 400–500 км/год.) в тому числі поїздів монорейкових естакадних шляхів на повітряній подушці або магнітній підвісці. (Один з випробувальних полігонів вагонів таких поїздів був розташований на березі Київського водосховища.

Л АД має такі ж конструктивні елементи як і звичайний асинхронний двигун, але дещо видозмінені. Поперечний перетин внутрішньої поверхні статора такого двигуна – прямолінійний, а не круговий. Такий статор можна уявити, якщо подумки розрізати статор звичайного асинхронного двигуна по радіусу і розгорнути на площині. В пазах такого статора розміщується трифазна обмотка. Вторинний елемент – також «пласка» конструкція (уявно отримана з розгорнутого ротора асинхронного двигуна).

При підключенні обмотки статора до мережі трифазної напруги трифазна система струмів утворює магнітний потік, який рухається вздовж статора. Цей магнітний потік, що рухається, індукує в обмотці вторинного елемента ЕРС, під дією якої в ній виникає струм. Взаємодія струму з магнітним потоком, що рухається, утворює силу, яка спрямована в бік руху магнітного потоку і діє на вторинний елемент. Під дією цієї сили вторинний елемент почне переміщуватись в сторону розповсюдження магнітного потоку з деяким відставанням (ковзанням) від нього.

Однофазний асинхронний двигун.

Н а статорі однофазного асинхронного двигуна розташована одна обмотка. Ротор двигуна має короткозамкнуту обмотку. Протікаючий по обмотці статора змінний струм утворює пульсуючий магнітний потік, що змінює свій напрямок з частотою напруги мережі. Напрямок цього потоку постійний в часі і його значення в часі змінюється за синусоїдальним законом.

Пульсуючий магнітний потік можна уявити як результат складання двох рівних за величиною потоків, що обертаються з однаковою частотою, але в протилежних напрямках. Для кожного моменту часу векторна сума потоків, що обертаються, дорівнює пульсуючому магнітному потоку.

nI = nII = n1 – оберти магнітних потоків; n2 – оберти ротора.

При нерухомому роторі ці потоки (ФІ і ФІІ) утворюють обертаючі моменти, напрямки яких, як вже нам відомо, співпадають з напрямком обертання магнітних потоків. Тобто потоки ФІ і ФІІ утворюють рівні, але протилежні за напрямком обертаючі моменти, в результаті чого ротор не може зрушити з місця. Якщо ротор обертати зовнішнім зусиллям в напрямку обертання потоку ФІ, то потік ФІ буде прямим, а потік ФІІ зворотним до ротора. При цьому ковзання ротора по відношенню до потоків ФІ і ФІІ стає різним. Ковзання по відношенню до прямого потоку SI = (nIn2) / nI = (n1n2) / n1, а ковзання по відношенню до зворотного потоку S = (n + n2) / n = (n1 + n2) / n1 = [n1 + n1(1 – SI)] / n1 = 2 – SI.

При пуску двигуна SІ = 1 і SІІ = 1. Якщо SІ = 0, то SІІ = 2, а якщо SІ = 2, то SІІ = 0.

З а залежностями МІ(SI) i MII(SII) можна побудувати сумарний обертаючий момент M(S)

З цієї залежності можна побачити, що при SІ = SІІ = 1 обертаючий момент М = 0. При зменшенні ковзання SІ двигун розвиває обертаючий момент, направлений в сторону обертання потоку Ф1; при зменшенні ковзання SІІ (SІІ < 1) – в сторону обертання потоку ФІІ: отже, якщо якось привести ротор до обертання, то виникає момент М > 0, який буде підтримувати це обертання.

Д ля утворення початкового обертаючого моменту (для пуску двигуна) використовують спеціальну пускову обмотку (ПО), розташовану на статорі під кутом 90 до робочої. Послідовно з пусковою обмоткою включений конденсатор С, завдяки якому струм в цій обмотці випереджує за фазою напругу в мережі на деякий кут.

Використання пускової обмотки забезпечує виконання двох необхідних умов отримання магнітного потоку, що обертається (зсув обмоток статора в просторі і зсув струмів в обмотках на деякий кут). Після розгону пускова обмотка відключається.