- •Технікум промислової автоматики
- •Вступ. Основні поняття і співвідношення в електричних колах.
- •Електричні схеми, елементи схем.
- •Закон Ома для ділянки кола.
- •Напруга на клемах джерела.
- •Енергетичні співвідношення. Закон Джоуля–Ленца. Баланс потужностей.
- •Режими роботи електричних кіл. Розрахунок кіл постійного струму. Режими роботи електричних кіл.
- •Режими холостого ходу і короткого замикання.
- •Точки характерних режимів на зовнішній характеристиці джерела.
- •Джерело ерс та джерело струму.
- •Розрахунок кіл постійного струму. Способи з’єднання споживачів
- •З’єднання елементів живлення.
- •Послідовне з’єднання елементів.
- •Паралельне з’єднання елементів.
- •З мішане з’єднання елементів.
- •Розрахунок простих кіл електричного струму.
- •Розрахунок складних кіл. Закони Кірхгофа.
- •Перетворення трикутника опорів в еквівалентну зірку.
- •Методи розрахунку складних електричних кіл. Використання законів Кірхгофа для розрахунку складних кіл.
- •Метод суперпозиції.
- •Метод контурних струмів.
- •Метод вузлових напруг.
- •Зауваження щодо аналогій з фізичними системами іншої природи.
- •Метод еквівалентного генератора.
- •Опір r схеми визначається методом еквівалентних перетворень схеми до загального опору відносно клем a, b при відключеному навантаженні і заморочених внутрішніх ерс.
- •Нелінійні опори та перехідні процеси. Нелінійні опори в колах постійного струму. Основні поняття.
- •Графічний метод розрахунку простих кіл з нелінійними опорами.
- •Коло з двома послідовними нелінійними опорами.
- •К оло з двома паралельними нелінійними опорами.
- •Змішане з’єднання нелінійних опорів
- •П риклад розрахунку схеми стабілізації струму.
- •Перехідні процеси в електричних колах Закони комутації
- •Загальні принципи аналізу перехідних процесів
- •Основні поняття змінного струму Змінний струм Передмова
- •Основні поняття
- •Діюче (ефективне, середньоквадратичне) значення.
- •Середнє значення змінного струму.
- •Зображення синусоїдальних величин векторами Векторна діаграма
- •Елементи кіл змінного струму
- •Активний опір на змінному струмі.
- •Індуктивність на змінному струмі. Котушка індуктивності.
- •Котушка індуктивності на змінному струмі
- •Конденсатор на змінному струмі.
- •Конденсатор на змінному струмі
- •Символічний метод
- •Нагадування про комплексні числа Форми запису комплексних чисел
- •Дії над комплексними числами
- •Уявлення параметрів електричного змінного струму через комплексні числа
- •Аналіз кіл синусоїдального струму. Закони Кірхгофа
- •Опір і провідність в комплексній формі.
- •Активна, реактивна і повна потужність.
- •Розрахунок складних кіл змінного струму.
- •Значення cos .
- •Електричні коливання. Коливальний контур.
- •Резонанс напруг.
- •Резонанс струмів.
- •Трифазні кола. Трифазна система ерс. Передмова
- •Устрій генератора трифазного струму
- •Н езв’язана система трифазних струмів
- •Основні схеми з’єднання в трифазних колах з ’єднання за схемою «зірка»
- •Потужність трифазного кола.
- •Розрахунок трифазного кола. Трипровідна система із симетричним навантаженням.
- •Чотирипровідна система при несиметричному навантаженні.
- •З’єднання за схемою “трикутник” з’єднання споживачів за схемою “трикутник”.
- •З’єднання обмоток генератора за схемою «трикутник».
- •З’єднання «зірка – трикутник»
- •З’єднання «трикутник – трикутник»
- •З’єднання «трикутник – зірка»
- •Трансформатори. Трансформатори
- •Трансформатори. Призначення та область використання
- •Устрій однофазного трансформатора
- •Режими роботи трансформатора
- •Холостий хід трансформатора
- •Н авантажений режим трансформатора. Робота трансформатора.
- •Рівняння намагнічуючих сил трансформатора.
- •Векторна діаграма навантаженого трансформатора.
- •Схеми заміщення.
- •Особливості використання трансформаторів. Приклад використання схеми заміщення для спрощення розрахунків
- •Зміна вторинної напруги трансформатора
- •Трифазні трансформатори
- •Устрій трифазного трансформатора
- •Групи з'єднання обмоток трифазного трансформатора.
- •Навантажувальна здатність трансформатора Номінальні параметри трансформатора
- •Дослід короткого замикання
- •Дослід холостого ходу
- •Коефіцієнт корисної дії (к.К.Д.) трансформатора.
- •Автотрансформатори
- •Асинхронні електричні машини.
- •Принцип дії асинхронної машини
- •Магнітне поле, що обертається
- •Режими роботи асинхронної машини
- •Конструкція ротора
- •Механічні характеристики асинхронного двигуна.
- •Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
- •Асинхронний лінійний двигун (лад).
- •Однофазний асинхронний двигун.
- •Синхронні генератори. Устрій і принцип дії синхронних генераторів. Основні частини синхронної машини.
- •Отримання синусоїдальної ерс.
- •Багатополюсні генератори.
- •Робочий процес синхронного генератора Холостий хід.
- •Реакція якоря.
- •Зовнішня і регулювальна характеристики.
- •Синхронний двигун
- •Принцип роботи синхронного двигуна.
- •Машини постійного струму.
- •Устрій та принцип дії генератора постійного струму
- •Магнітна система.
- •Ерс генератора.
- •Збудження генератора.
- •Генератор з паралельним збудженням.
- •Реакція якоря.
- •К омутація.
- •Зовнішня характеристика.
- •Виникнення електромагнітного обертаючого моменту.
- •Загальні відомості про електричні вимірювання Метрологія й метрологічне забезпечення
- •Номенклатура основних величин, що підлягають вимірюванням в електротехніці, електроенергетиці й електроніці
- •Номенклатура параметрів середовища життєдіяльності, що підлягають вимірюванням
- •Засоби вимірювань, різновиди
- •Характеристики якості результатів вимірювань
- •Малюнок 1 – Інтервали невизначеності погрішності (ліворуч) та істинного значення вимірюваної величини (праворуч).
- •Аналогові вимірювальні прилади. Загальні характеристики
- •Прилади магнітоелектричної системи
- •Прилади магнітоелектричної системи, принцип дії, варіанти застосування.
- •Прилади електродинамічної системи
- •Малюнок 2 – Прилади електродинамічної системи. Принцип дії, позначення, варіанти застосування.
- •Прилади феродинамічної системи
- •Малюнок 3 – Принцип дії приладу феродинамічної системи.
- •Прилади електромагнітної системи
- •Малюнок 4 – Принцип дії приладу електромагнітної системи.
- •Прилади електростатичної системи
- •Малюнок 5 – Принцип дії приладу електростатичної системи.
- •Прилади індукційної системи
- •Малюнок 6 – Прилад індукційної системи (лічильник електричної енергії). Принцип дії, позначення, схема включення.
- •Засоби розширення меж вимірювання
- •Малюнок 7 – з'єднання амперметра із шунтом.
- •Додаткові опори
- •Вимірювальні трансформатори струму
- •Малюнок 8 – Застосування трансформатора струму.
- •Вимірювальні трансформатори напруги
- •Правило вибору меж вимірювання
- •Вимірювання у трифазних колах змінного струму
- •Вимірювання лінійних струмів і напруг у трифазному трипроводному колі
- •Малюнок 9 – Вимірювання лінійних струмів і напруг у трифазних трипроводних ланцюгах.
- •Вимірювання активної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 10 – Включення ватметра й лічильника електричної енергії для вимірювань у симетричних трифазних ланцюгах з доступною й недоступною нейтралю.
- •Вимірювання реактивної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 11 – До вимірювання реактивної потужності й енергії.
- •Малюнок 12 – Схеми включення одного приладу для вимірювання реактивної електричної потужності й енергії в симетричному трифазному ланцюгу.
- •Вимірювання активної електричної потужності й енергії в трифазному колі за допомогою двох приладів
- •Малюнок 13 – Варіанти включення двох ватметрів й (або) лічильників активної потужності й електричної енергії в трифазних ланцюгах.
- •Мостові методи вимірювання
- •Мости постійного струму Мости постійного струму в рівноважному режимі
- •Малюнок 14 – Одинарний і подвійний мости постійного струму.
- •Мости постійного струму в нерівноважному режимі
- •Малюнок 15 – Мости постійного струму в нерівноважному режимі.
- •Мости змінного струму Умови рівноваги мостів змінного струму
- •Малюнок 16 – Мости змінного струму.
- •Міст змінного струму для вимірювання ємності конденсатора
- •Малюнок 17 – Схеми заміщення реального конденсатора й індуктивності.
- •Міст змінного струму для вимірювання індуктивності котушки
- •Метрологічні характеристики мостів
- •Література
Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
Ре = Р1е + Рм + Р2е + Рмех = Р1е + Рм + Р2е + Рмех + Р.
Тут:
Ре = 3U1I1cos 1 – потужність, що споживається двигуном з мережі;
Р1е = 3 I12R1 – електричні втрати в обмотці статора (втрати в міді);
Рм – магнітні втрати в сталі статора;
Магнітні втрати в роторі пропорційні частоті f2, дуже малі і ними нехтують.
Р2е = 3 I22R2 – електричні втрати в обмотці ротора (втрати в міді);
Рмех – повна механічна потужність, що розвивається двигуном;
Рмех – механічні втрати в двигуні;
Р – корисна потужність на валу двигуна.
Корисна механічна потужність двигуна Р менша за потужність Рмех на величину механічних втрат в двигуні: Р = Рмех – Рмех.
Величина Ре м = Ре – Р1е – Рм уявляє собою електромагнітну потужність двигуна, що передається від статора до ротору через обертове магнітне поле.
В заводському паспорті, на щитку двигуна і в каталогах вказується не споживана з мережи електрична потужність Ре, а корисна механічна потужність Рн на валу двигуна при номінальному режимі роботи.
Асинхронний лінійний двигун (лад).
Лінійний електродвигун винайшов в 1902 р. англійський інженер Трамбета. В ЛАД електроенергія перетворюється безпосередньо в механічну енергію прямолінійного переміщення робочого органу машин і механізмів. В цих агрегатах відсутня громіздка проміжна механічна ланка, що перетворює обертовий рух в поступовий. Крім того, ці двигуни бесконтактні, тобто без механічних зв’язків між статором і вторинним елементом двигуна.
ЛАД використовуються в крнвейєрних лініях, в виконавчих елементах автоматики, у високошвидкісному надземному електротранспорті (швидкість понад 400–500 км/год.) в тому числі поїздів монорейкових естакадних шляхів на повітряній подушці або магнітній підвісці. (Один з випробувальних полігонів вагонів таких поїздів був розташований на березі Київського водосховища.
Л
АД
має такі ж конструктивні елементи як і
звичайний асинхронний двигун, але дещо
видозмінені. Поперечний перетин
внутрішньої поверхні статора
такого двигуна – прямолінійний, а не
круговий. Такий статор можна уявити,
якщо подумки розрізати статор звичайного
асинхронного двигуна по радіусу і
розгорнути на площині. В пазах такого
статора розміщується трифазна обмотка.
Вторинний елемент – також «пласка»
конструкція (уявно отримана з розгорнутого
ротора асинхронного двигуна).
При підключенні обмотки статора до мережі трифазної напруги трифазна система струмів утворює магнітний потік, який рухається вздовж статора. Цей магнітний потік, що рухається, індукує в обмотці вторинного елемента ЕРС, під дією якої в ній виникає струм. Взаємодія струму з магнітним потоком, що рухається, утворює силу, яка спрямована в бік руху магнітного потоку і діє на вторинний елемент. Під дією цієї сили вторинний елемент почне переміщуватись в сторону розповсюдження магнітного потоку з деяким відставанням (ковзанням) від нього.
Однофазний асинхронний двигун.
Н
а
статорі однофазного асинхронного
двигуна розташована одна обмотка. Ротор
двигуна має короткозамкнуту обмотку.
Протікаючий по обмотці статора змінний
струм утворює пульсуючий магнітний
потік, що змінює свій напрямок з частотою
напруги мережі. Напрямок цього потоку
постійний в часі і його значення в часі
змінюється за синусоїдальним законом.
Пульсуючий магнітний потік можна уявити як результат складання двох рівних за величиною потоків, що обертаються з однаковою частотою, але в протилежних напрямках. Для кожного моменту часу векторна сума потоків, що обертаються, дорівнює пульсуючому магнітному потоку.
nI = nII = n1 – оберти магнітних потоків; n2 – оберти ротора.
При нерухомому роторі ці потоки (ФІ і ФІІ) утворюють обертаючі моменти, напрямки яких, як вже нам відомо, співпадають з напрямком обертання магнітних потоків. Тобто потоки ФІ і ФІІ утворюють рівні, але протилежні за напрямком обертаючі моменти, в результаті чого ротор не може зрушити з місця. Якщо ротор обертати зовнішнім зусиллям в напрямку обертання потоку ФІ, то потік ФІ буде прямим, а потік ФІІ зворотним до ротора. При цьому ковзання ротора по відношенню до потоків ФІ і ФІІ стає різним. Ковзання по відношенню до прямого потоку SI = (nI – n2) / nI = (n1 – n2) / n1, а ковзання по відношенню до зворотного потоку SIІ = (nIІ + n2) / nIІ = (n1 + n2) / n1 = [n1 + n1(1 – SI)] / n1 = 2 – SI.
При пуску двигуна SІ = 1 і SІІ = 1. Якщо SІ = 0, то SІІ = 2, а якщо SІ = 2, то SІІ = 0.
З
а
залежностями МІ(SI)
i MII(SII)
можна побудувати сумарний обертаючий
момент M(S)
З цієї залежності можна побачити, що при SІ = SІІ = 1 обертаючий момент М = 0. При зменшенні ковзання SІ двигун розвиває обертаючий момент, направлений в сторону обертання потоку Ф1; при зменшенні ковзання SІІ (SІІ < 1) – в сторону обертання потоку ФІІ: отже, якщо якось привести ротор до обертання, то виникає момент М > 0, який буде підтримувати це обертання.
Д
ля
утворення початкового обертаючого
моменту (для пуску двигуна) використовують
спеціальну пускову
обмотку
(ПО), розташовану на статорі під кутом
90
до робочої. Послідовно з пусковою
обмоткою включений конденсатор С,
завдяки якому струм в цій обмотці
випереджує за фазою напругу в мережі
на деякий кут.
Використання пускової обмотки забезпечує виконання двох необхідних умов отримання магнітного потоку, що обертається (зсув обмоток статора в просторі і зсув струмів в обмотках на деякий кут). Після розгону пускова обмотка відключається.
