- •Технікум промислової автоматики
- •Вступ. Основні поняття і співвідношення в електричних колах.
- •Електричні схеми, елементи схем.
- •Закон Ома для ділянки кола.
- •Напруга на клемах джерела.
- •Енергетичні співвідношення. Закон Джоуля–Ленца. Баланс потужностей.
- •Режими роботи електричних кіл. Розрахунок кіл постійного струму. Режими роботи електричних кіл.
- •Режими холостого ходу і короткого замикання.
- •Точки характерних режимів на зовнішній характеристиці джерела.
- •Джерело ерс та джерело струму.
- •Розрахунок кіл постійного струму. Способи з’єднання споживачів
- •З’єднання елементів живлення.
- •Послідовне з’єднання елементів.
- •Паралельне з’єднання елементів.
- •З мішане з’єднання елементів.
- •Розрахунок простих кіл електричного струму.
- •Розрахунок складних кіл. Закони Кірхгофа.
- •Перетворення трикутника опорів в еквівалентну зірку.
- •Методи розрахунку складних електричних кіл. Використання законів Кірхгофа для розрахунку складних кіл.
- •Метод суперпозиції.
- •Метод контурних струмів.
- •Метод вузлових напруг.
- •Зауваження щодо аналогій з фізичними системами іншої природи.
- •Метод еквівалентного генератора.
- •Опір r схеми визначається методом еквівалентних перетворень схеми до загального опору відносно клем a, b при відключеному навантаженні і заморочених внутрішніх ерс.
- •Нелінійні опори та перехідні процеси. Нелінійні опори в колах постійного струму. Основні поняття.
- •Графічний метод розрахунку простих кіл з нелінійними опорами.
- •Коло з двома послідовними нелінійними опорами.
- •К оло з двома паралельними нелінійними опорами.
- •Змішане з’єднання нелінійних опорів
- •П риклад розрахунку схеми стабілізації струму.
- •Перехідні процеси в електричних колах Закони комутації
- •Загальні принципи аналізу перехідних процесів
- •Основні поняття змінного струму Змінний струм Передмова
- •Основні поняття
- •Діюче (ефективне, середньоквадратичне) значення.
- •Середнє значення змінного струму.
- •Зображення синусоїдальних величин векторами Векторна діаграма
- •Елементи кіл змінного струму
- •Активний опір на змінному струмі.
- •Індуктивність на змінному струмі. Котушка індуктивності.
- •Котушка індуктивності на змінному струмі
- •Конденсатор на змінному струмі.
- •Конденсатор на змінному струмі
- •Символічний метод
- •Нагадування про комплексні числа Форми запису комплексних чисел
- •Дії над комплексними числами
- •Уявлення параметрів електричного змінного струму через комплексні числа
- •Аналіз кіл синусоїдального струму. Закони Кірхгофа
- •Опір і провідність в комплексній формі.
- •Активна, реактивна і повна потужність.
- •Розрахунок складних кіл змінного струму.
- •Значення cos .
- •Електричні коливання. Коливальний контур.
- •Резонанс напруг.
- •Резонанс струмів.
- •Трифазні кола. Трифазна система ерс. Передмова
- •Устрій генератора трифазного струму
- •Н езв’язана система трифазних струмів
- •Основні схеми з’єднання в трифазних колах з ’єднання за схемою «зірка»
- •Потужність трифазного кола.
- •Розрахунок трифазного кола. Трипровідна система із симетричним навантаженням.
- •Чотирипровідна система при несиметричному навантаженні.
- •З’єднання за схемою “трикутник” з’єднання споживачів за схемою “трикутник”.
- •З’єднання обмоток генератора за схемою «трикутник».
- •З’єднання «зірка – трикутник»
- •З’єднання «трикутник – трикутник»
- •З’єднання «трикутник – зірка»
- •Трансформатори. Трансформатори
- •Трансформатори. Призначення та область використання
- •Устрій однофазного трансформатора
- •Режими роботи трансформатора
- •Холостий хід трансформатора
- •Н авантажений режим трансформатора. Робота трансформатора.
- •Рівняння намагнічуючих сил трансформатора.
- •Векторна діаграма навантаженого трансформатора.
- •Схеми заміщення.
- •Особливості використання трансформаторів. Приклад використання схеми заміщення для спрощення розрахунків
- •Зміна вторинної напруги трансформатора
- •Трифазні трансформатори
- •Устрій трифазного трансформатора
- •Групи з'єднання обмоток трифазного трансформатора.
- •Навантажувальна здатність трансформатора Номінальні параметри трансформатора
- •Дослід короткого замикання
- •Дослід холостого ходу
- •Коефіцієнт корисної дії (к.К.Д.) трансформатора.
- •Автотрансформатори
- •Асинхронні електричні машини.
- •Принцип дії асинхронної машини
- •Магнітне поле, що обертається
- •Режими роботи асинхронної машини
- •Конструкція ротора
- •Механічні характеристики асинхронного двигуна.
- •Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
- •Асинхронний лінійний двигун (лад).
- •Однофазний асинхронний двигун.
- •Синхронні генератори. Устрій і принцип дії синхронних генераторів. Основні частини синхронної машини.
- •Отримання синусоїдальної ерс.
- •Багатополюсні генератори.
- •Робочий процес синхронного генератора Холостий хід.
- •Реакція якоря.
- •Зовнішня і регулювальна характеристики.
- •Синхронний двигун
- •Принцип роботи синхронного двигуна.
- •Машини постійного струму.
- •Устрій та принцип дії генератора постійного струму
- •Магнітна система.
- •Ерс генератора.
- •Збудження генератора.
- •Генератор з паралельним збудженням.
- •Реакція якоря.
- •К омутація.
- •Зовнішня характеристика.
- •Виникнення електромагнітного обертаючого моменту.
- •Загальні відомості про електричні вимірювання Метрологія й метрологічне забезпечення
- •Номенклатура основних величин, що підлягають вимірюванням в електротехніці, електроенергетиці й електроніці
- •Номенклатура параметрів середовища життєдіяльності, що підлягають вимірюванням
- •Засоби вимірювань, різновиди
- •Характеристики якості результатів вимірювань
- •Малюнок 1 – Інтервали невизначеності погрішності (ліворуч) та істинного значення вимірюваної величини (праворуч).
- •Аналогові вимірювальні прилади. Загальні характеристики
- •Прилади магнітоелектричної системи
- •Прилади магнітоелектричної системи, принцип дії, варіанти застосування.
- •Прилади електродинамічної системи
- •Малюнок 2 – Прилади електродинамічної системи. Принцип дії, позначення, варіанти застосування.
- •Прилади феродинамічної системи
- •Малюнок 3 – Принцип дії приладу феродинамічної системи.
- •Прилади електромагнітної системи
- •Малюнок 4 – Принцип дії приладу електромагнітної системи.
- •Прилади електростатичної системи
- •Малюнок 5 – Принцип дії приладу електростатичної системи.
- •Прилади індукційної системи
- •Малюнок 6 – Прилад індукційної системи (лічильник електричної енергії). Принцип дії, позначення, схема включення.
- •Засоби розширення меж вимірювання
- •Малюнок 7 – з'єднання амперметра із шунтом.
- •Додаткові опори
- •Вимірювальні трансформатори струму
- •Малюнок 8 – Застосування трансформатора струму.
- •Вимірювальні трансформатори напруги
- •Правило вибору меж вимірювання
- •Вимірювання у трифазних колах змінного струму
- •Вимірювання лінійних струмів і напруг у трифазному трипроводному колі
- •Малюнок 9 – Вимірювання лінійних струмів і напруг у трифазних трипроводних ланцюгах.
- •Вимірювання активної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 10 – Включення ватметра й лічильника електричної енергії для вимірювань у симетричних трифазних ланцюгах з доступною й недоступною нейтралю.
- •Вимірювання реактивної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 11 – До вимірювання реактивної потужності й енергії.
- •Малюнок 12 – Схеми включення одного приладу для вимірювання реактивної електричної потужності й енергії в симетричному трифазному ланцюгу.
- •Вимірювання активної електричної потужності й енергії в трифазному колі за допомогою двох приладів
- •Малюнок 13 – Варіанти включення двох ватметрів й (або) лічильників активної потужності й електричної енергії в трифазних ланцюгах.
- •Мостові методи вимірювання
- •Мости постійного струму Мости постійного струму в рівноважному режимі
- •Малюнок 14 – Одинарний і подвійний мости постійного струму.
- •Мости постійного струму в нерівноважному режимі
- •Малюнок 15 – Мости постійного струму в нерівноважному режимі.
- •Мости змінного струму Умови рівноваги мостів змінного струму
- •Малюнок 16 – Мости змінного струму.
- •Міст змінного струму для вимірювання ємності конденсатора
- •Малюнок 17 – Схеми заміщення реального конденсатора й індуктивності.
- •Міст змінного струму для вимірювання індуктивності котушки
- •Метрологічні характеристики мостів
- •Література
Резонанс напруг.
Розглянемо коло:
Як відзначалось, при резонансі струм і напруга співпадають за фазою, тобто = 0 і повний опір кола дорівнює його активному опору
Ця рівність буде мати місце, коли XL = XC, тобто реактивний опір кола дорівнює 0: Х = XL – XC = 0, де XL = L = 2fL і XC = 1/(С) = 1/(2fC), тобто: 2fL = 1/(2fC). Звідки:
.
Отже, при XL = XC , а це може бути, коли частота підведеної напруги дорівнює частоті, що визначена останньою формулою, в колі виникає резонанс напруг.
З
виразу закону Ома для послідовного кола
випливає, що струм в колі при резонансі
дорівнює напрузі, поділеній на активний
опір I=U/R.
Отже струм в колі може виявитись значно
більшим за струм, який би мав бути при
відсутності резонансу.
При резонансі напруга на індуктивності дорівнює напрузі на ємності
IXL = IXC = UL = UC.
При великих значеннях XL і XC відносно R ці напруги можуть в багато разів перевищувати напругу живлення. Підвищення напруги (перенапруга) на окремих ділянках кола, якщо воно заздалегідь не враховане, є небезпечним для цілісності ізоляції електричної установки.
Резонанс в колі при послідовному з’єднані споживачів має назву резонанс напруг.
Напруга на активному опорі при резонансі дорівнює напрузі, що прикладена до кола UR = IR = U.
Векторна діаграма при резонансі (на малюнку діаграма б)) ілюструє той факт, що струм співпадає за фазою з напругою і що напруга на активному опорі дорівнює напрузі живлення.
Реактивна потужність при резонансі дорівнює нулю
Q = QL – QC = ULI – UCI = 0, оскільки UL = UC.
Повна
потужність дорівнює активній потужності
,
оскільки Q
= 0.
Коефіцієнт потужності дорівнює одиниці сos = P/S = R/Z = 1.
Оскільки резонанс напруг виникає, коли індуктивний опір послідовного кола дорівнює ємнісному, а їх значення визначаються відповідно індуктивністю, ємністю кола і частотою живлення (XL = 2fL і XC = 1/(2fC)), то резонанс може бути досягнутий або шляхом підбору параметрів кола при заданій частоті живлення, або шляхом підбору частоти живлення при заданих параметрах кола.
В інтервалі частот f = 0 fрез навантаження має активно–ємнісний характер, струм випереджає за фазою напругу живлення.
В інтервалі частот f = fрез навантаження має активно–індуктивний характер, струм відстає за фазою від напруги живлення.
Найбільше значення напруги на ємності отримується при частоті трохи меншій за резонансну, а на індуктивності – на частоті трохи більшій за резонансну.
В ряді областей електротехніки резонанс напруг знаходить корисне застосування. Коливальні контури, наприклад, є обов’язковою частиною радіотехнічних пристроїв. Зокрема, настройка радіоприймача полягає в тому, щоб шляхом зміни ємності С або індуктивності L досягнути збігу частоти коливального контуру в приймачі з частотою генераторів радіостанції.
Резонанс струмів.
Р
езонанс
струмів може виникнути в паралельному
колі, одна з віток якого включає L
і
R,
а інша
C і
R.
Резонансом струмів називають такий стан кола, коли струм в нерозгалуженій частині кола (І) співпадає за фазою з напругою, реактивна потужність дорівнює нулю і коло споживає тільки активну потужність.
Як це видно з векторної діаграми (б), загальний струм в колі співпадає за фазою з напругою, якщо реактивні складові струмів у вітках з індуктивністю і ємністю рівні за модулем |Ір1| = |Ір2|.
Реактивна складова загального струму кола, що дорівнює різниці реактивних складових струмів, в цьому випадку дорівнює нулю Ір1 – Ір2 = 0.
Загальний струм кола має тільки активну складову, що дорівнює сумі активних складових струмів у вітках І = Іа = Іа1 + Іа2.
Виразивши реактивні складові струмів через напруги і реактивні опори отримаємо
або
UbL
= UbC,
де bL
і bC
відповідні реактивні провідності.
Звідки bL = bC.
Отже, при резонансі струмів реактивна провідність вітки з індуктивністю дорівнює реактивній провідності вітки із ємністю.
Виразивши bL і bC через опори відповідних віток можна визначити резонансну частоту контуру:
.
Звідки:
.
В
ідеальному випадку, коли R1
= R2
= 0:
.
При резонансі струмів коефіцієнт потужності дорівнює одиниці cos =1.
Повна потужність дорівнює активній потужності S = P.
Реактивна потужність дорівнює нулю Q = QL – QC = 0.
Енергетичні співвідношення в колі при резонансі струмів аналогічні процесам, що проходять при резонансі напруг.
Реактивна енергія діє всередині кола. В одну частину періоду енергія магнітного поля індуктивності переходить в енергію електричного поля ємності, в наступну частину періоду енергія електричного поля ємності переходить в енергію магнітного поля індуктивності. Обміну реактивною енергією між споживачами кола і джерелом живлення нема. Струм в проводах, що з’єднують коло з джерелом, обумовлений тільки активною потужністю.
Для резонансу струмів характерно, що загальний струм в нерозгалуженій частині кола при певному збігу параметрів кола може бути значно меншим струмів в кожній з віток. Для ідеального кола (R1 = R2 =0) загальний струм дорівнює нулю, а струми віток з ємністю і індуктивністю існують: вони рівні за модулем і зсунуті за фазою на 180.
Резонанс в колі при паралельному з’єднанні споживачів називається резонансом струмів.
Резонанс струмів може бути отриманий шляхом підбору параметрів при заданій частоті джерела живлення або шляхом підбору частоти джерела живлення при заданих параметрах кола.
