- •Технікум промислової автоматики
- •Вступ. Основні поняття і співвідношення в електричних колах.
- •Електричні схеми, елементи схем.
- •Закон Ома для ділянки кола.
- •Напруга на клемах джерела.
- •Енергетичні співвідношення. Закон Джоуля–Ленца. Баланс потужностей.
- •Режими роботи електричних кіл. Розрахунок кіл постійного струму. Режими роботи електричних кіл.
- •Режими холостого ходу і короткого замикання.
- •Точки характерних режимів на зовнішній характеристиці джерела.
- •Джерело ерс та джерело струму.
- •Розрахунок кіл постійного струму. Способи з’єднання споживачів
- •З’єднання елементів живлення.
- •Послідовне з’єднання елементів.
- •Паралельне з’єднання елементів.
- •З мішане з’єднання елементів.
- •Розрахунок простих кіл електричного струму.
- •Розрахунок складних кіл. Закони Кірхгофа.
- •Перетворення трикутника опорів в еквівалентну зірку.
- •Методи розрахунку складних електричних кіл. Використання законів Кірхгофа для розрахунку складних кіл.
- •Метод суперпозиції.
- •Метод контурних струмів.
- •Метод вузлових напруг.
- •Зауваження щодо аналогій з фізичними системами іншої природи.
- •Метод еквівалентного генератора.
- •Опір r схеми визначається методом еквівалентних перетворень схеми до загального опору відносно клем a, b при відключеному навантаженні і заморочених внутрішніх ерс.
- •Нелінійні опори та перехідні процеси. Нелінійні опори в колах постійного струму. Основні поняття.
- •Графічний метод розрахунку простих кіл з нелінійними опорами.
- •Коло з двома послідовними нелінійними опорами.
- •К оло з двома паралельними нелінійними опорами.
- •Змішане з’єднання нелінійних опорів
- •П риклад розрахунку схеми стабілізації струму.
- •Перехідні процеси в електричних колах Закони комутації
- •Загальні принципи аналізу перехідних процесів
- •Основні поняття змінного струму Змінний струм Передмова
- •Основні поняття
- •Діюче (ефективне, середньоквадратичне) значення.
- •Середнє значення змінного струму.
- •Зображення синусоїдальних величин векторами Векторна діаграма
- •Елементи кіл змінного струму
- •Активний опір на змінному струмі.
- •Індуктивність на змінному струмі. Котушка індуктивності.
- •Котушка індуктивності на змінному струмі
- •Конденсатор на змінному струмі.
- •Конденсатор на змінному струмі
- •Символічний метод
- •Нагадування про комплексні числа Форми запису комплексних чисел
- •Дії над комплексними числами
- •Уявлення параметрів електричного змінного струму через комплексні числа
- •Аналіз кіл синусоїдального струму. Закони Кірхгофа
- •Опір і провідність в комплексній формі.
- •Активна, реактивна і повна потужність.
- •Розрахунок складних кіл змінного струму.
- •Значення cos .
- •Електричні коливання. Коливальний контур.
- •Резонанс напруг.
- •Резонанс струмів.
- •Трифазні кола. Трифазна система ерс. Передмова
- •Устрій генератора трифазного струму
- •Н езв’язана система трифазних струмів
- •Основні схеми з’єднання в трифазних колах з ’єднання за схемою «зірка»
- •Потужність трифазного кола.
- •Розрахунок трифазного кола. Трипровідна система із симетричним навантаженням.
- •Чотирипровідна система при несиметричному навантаженні.
- •З’єднання за схемою “трикутник” з’єднання споживачів за схемою “трикутник”.
- •З’єднання обмоток генератора за схемою «трикутник».
- •З’єднання «зірка – трикутник»
- •З’єднання «трикутник – трикутник»
- •З’єднання «трикутник – зірка»
- •Трансформатори. Трансформатори
- •Трансформатори. Призначення та область використання
- •Устрій однофазного трансформатора
- •Режими роботи трансформатора
- •Холостий хід трансформатора
- •Н авантажений режим трансформатора. Робота трансформатора.
- •Рівняння намагнічуючих сил трансформатора.
- •Векторна діаграма навантаженого трансформатора.
- •Схеми заміщення.
- •Особливості використання трансформаторів. Приклад використання схеми заміщення для спрощення розрахунків
- •Зміна вторинної напруги трансформатора
- •Трифазні трансформатори
- •Устрій трифазного трансформатора
- •Групи з'єднання обмоток трифазного трансформатора.
- •Навантажувальна здатність трансформатора Номінальні параметри трансформатора
- •Дослід короткого замикання
- •Дослід холостого ходу
- •Коефіцієнт корисної дії (к.К.Д.) трансформатора.
- •Автотрансформатори
- •Асинхронні електричні машини.
- •Принцип дії асинхронної машини
- •Магнітне поле, що обертається
- •Режими роботи асинхронної машини
- •Конструкція ротора
- •Механічні характеристики асинхронного двигуна.
- •Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
- •Асинхронний лінійний двигун (лад).
- •Однофазний асинхронний двигун.
- •Синхронні генератори. Устрій і принцип дії синхронних генераторів. Основні частини синхронної машини.
- •Отримання синусоїдальної ерс.
- •Багатополюсні генератори.
- •Робочий процес синхронного генератора Холостий хід.
- •Реакція якоря.
- •Зовнішня і регулювальна характеристики.
- •Синхронний двигун
- •Принцип роботи синхронного двигуна.
- •Машини постійного струму.
- •Устрій та принцип дії генератора постійного струму
- •Магнітна система.
- •Ерс генератора.
- •Збудження генератора.
- •Генератор з паралельним збудженням.
- •Реакція якоря.
- •К омутація.
- •Зовнішня характеристика.
- •Виникнення електромагнітного обертаючого моменту.
- •Загальні відомості про електричні вимірювання Метрологія й метрологічне забезпечення
- •Номенклатура основних величин, що підлягають вимірюванням в електротехніці, електроенергетиці й електроніці
- •Номенклатура параметрів середовища життєдіяльності, що підлягають вимірюванням
- •Засоби вимірювань, різновиди
- •Характеристики якості результатів вимірювань
- •Малюнок 1 – Інтервали невизначеності погрішності (ліворуч) та істинного значення вимірюваної величини (праворуч).
- •Аналогові вимірювальні прилади. Загальні характеристики
- •Прилади магнітоелектричної системи
- •Прилади магнітоелектричної системи, принцип дії, варіанти застосування.
- •Прилади електродинамічної системи
- •Малюнок 2 – Прилади електродинамічної системи. Принцип дії, позначення, варіанти застосування.
- •Прилади феродинамічної системи
- •Малюнок 3 – Принцип дії приладу феродинамічної системи.
- •Прилади електромагнітної системи
- •Малюнок 4 – Принцип дії приладу електромагнітної системи.
- •Прилади електростатичної системи
- •Малюнок 5 – Принцип дії приладу електростатичної системи.
- •Прилади індукційної системи
- •Малюнок 6 – Прилад індукційної системи (лічильник електричної енергії). Принцип дії, позначення, схема включення.
- •Засоби розширення меж вимірювання
- •Малюнок 7 – з'єднання амперметра із шунтом.
- •Додаткові опори
- •Вимірювальні трансформатори струму
- •Малюнок 8 – Застосування трансформатора струму.
- •Вимірювальні трансформатори напруги
- •Правило вибору меж вимірювання
- •Вимірювання у трифазних колах змінного струму
- •Вимірювання лінійних струмів і напруг у трифазному трипроводному колі
- •Малюнок 9 – Вимірювання лінійних струмів і напруг у трифазних трипроводних ланцюгах.
- •Вимірювання активної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 10 – Включення ватметра й лічильника електричної енергії для вимірювань у симетричних трифазних ланцюгах з доступною й недоступною нейтралю.
- •Вимірювання реактивної електричної потужності й енергії в симетричних трифазних колах одним приладом
- •Малюнок 11 – До вимірювання реактивної потужності й енергії.
- •Малюнок 12 – Схеми включення одного приладу для вимірювання реактивної електричної потужності й енергії в симетричному трифазному ланцюгу.
- •Вимірювання активної електричної потужності й енергії в трифазному колі за допомогою двох приладів
- •Малюнок 13 – Варіанти включення двох ватметрів й (або) лічильників активної потужності й електричної енергії в трифазних ланцюгах.
- •Мостові методи вимірювання
- •Мости постійного струму Мости постійного струму в рівноважному режимі
- •Малюнок 14 – Одинарний і подвійний мости постійного струму.
- •Мости постійного струму в нерівноважному режимі
- •Малюнок 15 – Мости постійного струму в нерівноважному режимі.
- •Мости змінного струму Умови рівноваги мостів змінного струму
- •Малюнок 16 – Мости змінного струму.
- •Міст змінного струму для вимірювання ємності конденсатора
- •Малюнок 17 – Схеми заміщення реального конденсатора й індуктивності.
- •Міст змінного струму для вимірювання індуктивності котушки
- •Метрологічні характеристики мостів
- •Література
Активна, реактивна і повна потужність.
Я
кщо
сторони трикутника напруг помножити
на струм І,
то отримаємо трикутник потужностей:
Активна потужність – P = UaI = UI cos [вт];
Реактивна потужність – Q = UL / CI = UI sin [вар];
Повна потужність – S = UI [ва].
Розрахунок складних кіл змінного струму.
Формули законів Ома і Кірхгофа для кіл змінного струму в комплексній формі мають таку ж структуру, як і для кіл постійного струму. Тому методи розрахунку лінійних кіл постійного струму, що були вже розглянуті (метод безпосереднього використання законів Кірхгофа, метод суперпозиції, метод контурних струмів, метод вузлових потенціалів, метод еквівалентного генератора), можна застосовувати для розрахунку складних лінійних кіл синусоїдального змінного струму. В цьому випадку всі ЕРС, напруги, струми, опори і провідності ділянок кола визначаються так же , як і в колах постійного струму, але в комплексній формі.
Значення cos .
Електроприймачі змінного струму є або пристроями, що споживають тільки активну потужність (лампи розжарювання, електронагрівальні прилади – печі, праски), або пристрої, що споживають як активну, так і реактивну потужність (зокрема двигуни змінного струму).
Активна потужність, що споживається двигуном, перетворюється ним в корисну механічну роботу і частково розсіюється у вигляді тепла.
Разом з необратним перетворенням електроенергії в інші види енергії тут одночасно проходить обратний процес обміну енергією між змінним магнітним полем і джерелом живлення.
Якщо
б двигун отримував від джерела тільки
активну потужність Р,
тобто працював би з cos
= 1, то споживав би струм I
= P / U.
В дійсності двигун змінного струму є
для джерела як активним, так і реактивним
навантаженням, тобто працює з індуктивним
cos .
В зв’язку з цим двигун при тій же активній
потужності Р
і, відповідно, при тій же корисній
механічній роботі споживає з мережі
струм більшої величини
.
Зниження cos призводить:
до підвищення втрат електроенергії (I 2Rt) в проводах лінії;
до завищення необхідної потужності (S = UI) джерела живлення.
Так, наприклад, якщо двигун працює з cos = 0,7, то втрати енергії в лінії збільшується пропорційно (1/ cos ) 2, тобто в 2 рази, а потужність джерела повинна бути більшою майже в 1,5 рази в порівняння з роботою при cos = 1.
Якщо паралельно двигуну включити конденсатор такої ємності, щоб реактивна складова загального струму стала рівною нулю, то загальний cos кола буде дорівнювати 1. У випадку повної компенсації конденсатор цілком покриває потреби двигуна в реактивній потужності і із мережі буде споживатись тільки активна потужність Р.
Для усвідомлення значення cos звернемось до основних характеристик генератора: номінальні напруга Uном, струм Iном, потужність Sном = Uном Iном. Uном = 1200 В, Iном = 200 А. Тоді Sном = Uном Iном = 1200200 = 240 кВА. Будемо приєднувати навантаження з різними cos .
Для активного навантаження cos = 1, активна потужність генератора Р = Uном Iном = 240 квт, тобто дорівнює повній потужності.
Для навантаження з cos = 0,5 активна потужність генератора Р = Uном Iном cos = 12002000,5 = 120 квт, тобто знижується в 2 рази. Не зважаючи на це по генератору і проводах проходить той же струм 200 А. Тобто генератор працює з повною потужністю. Активна потужність генератора зменшилась за рахунок збільшення реактивної потужності, що без користі завантажує генератор і лінію електропередачі.
Д
о
підключення конденсатора Q
= Ptg.
З конденсатором Q к = Ptg к.
Реактивна потужність, яку повинен сприйняти конденсатор
QС
= Q
– Q к
= Р(tg
– tg к).
З іншого боку
.
Звідки:
.
Для
повної компенсації реактивної потужності
( к
= 0) необхідний конденсатор ємкістю
.
