Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
konspekt_po_fizike_na_2-y_kurs_4-y_semestr_60_v...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.01 Mб
Скачать
  1. Соотношение неопределенностей. Соотношения неопределённостей Uncertainty relations

    Соотношения неопределённостей – фундаментальные соотношения квантовой механики, устанавливающие предел точности одновременного определения так называемых дополнительных физических величин, характеризующих систему (например, координаты и импульса). В упрощённой формулировке эти соотношения утверждают, что дополнительные физические величины не могут быть одновременно точно определены. Неопределённостей соотношения являются следствием двойственной, корпускулярно-волновой природы частиц материи, отражением вероятностной (статистической) сути квантовой механики.     Неопределённостей соотношения имеют вид неравенств, например, ΔxΔp > ћ = h/2π,где Δx – неопределённость координаты (частицы или системы), Δp – неопределённость её импульса, а h = 6.6·10-34 Дж.с = 4.1·10-15 эВ.с - постоянная Планка. Отсюда видно, что произведение неопределённостей координаты и импульса не может быть меньше ћ, и никаким усовершенствованием методов наблюдения нельзя преодолеть этот рубеж. Увеличение точности определения координаты неизбежно ведёт к потере точности определения импульса. Предельная точность одновременного определения координаты и импульса даётся соотношением Δx·Δp ≈ ћ.     Другая важная пара дополнительных физических величин – энергия Е и время t. Соотношение неопределённостей для них имеет вид ΔЕ·Δt > ћ. Это соотношение для релятивистских системы или частиц (двигающихся со скоростью близкой к скорости света с) может быть получено из соотношения неопределённостей для координаты и импульса простым преобразованием: Δx/с·Δpс = ΔtΔЕ > ћ. Полученное соотношение для времени и энергии можно трактовать следующим образом. Для того, чтобы определить энергию частицы (системы) с точностью ΔЕ, необходимо проводить измерения в течение промежутка времени Δt > ћ/ΔЕ. Следствием этого соотношения является возможность виртуальных (ненаблюдаемых) процессов, лежащих в основе механизма взаимодействия частиц в квантовой теории поля. Две частицы взаимодействуют, обмениваясь с нарушением баланса энергии на величину ΔЕвиртуальным (ненаблюдаемым) переносчиком взаимодействия, существующим в течение времени Δt < ћ/ΔЕ.     Другая трактовка соотношения ΔЕΔt ≈ ћ связана с понятием времени жизни нестабильного (распадающегося состояния системы или частицы). Так, если квантовая система в дискретном энергетическом состоянии живёт в среднем время τ ≈ Δt, то энергетическая ширина уровня Г даётся соотношением Г ≈ ΔЕ ≈ ћ/Δt ≈ ћ/τ.      В силу крайней малости константы Планка ћ, соотношения неопределённостей не играют практически никакой роли для макроскопических тел.

  1. Волновая функция и её статистический смысл.

Волновая функция и ее статистический смысл

Мы привыкли к тому, что физически реальное - измеримо. Бор и Гейзенберг сделали обратное высказывание: " Принципиально неизмеримое - физически нереально." Поэтому "не надо говорить о вещах, которые невозможно измерить" (Фейнман). Поскольку из соотношения неопределенностей следует, что частица не имеет одновременно импульс и координату, то не следует об этом и говорить. А "говорить" следует о волновой функции, которая описывает микросостояние системы, ее волновые свойства.

Де Бройль связал со свободно движущейся частицей плоскую волну. Известно [cм. (1.5), (1.6)], что плоская волна, распространяющаяся в направлении оси х описывается уравнением

S=Acos(t- kх+О)

или в экспоненциальной форме

S=АOехр[i(t- kх+О)].

Заменив в соответствии с (1) и (2) и k=2/ через Е и p, уравнение волны де Бройля для свободной частицы пишут в виде

 Oехр[(-i/ )(Еt- pх)]. (16)

(в квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет || 2, то это [cм.(16)] несущественно).

Функцию  называют волновой функций или пси-функцией. Она, как правило, бывает комплексной.

Интепретацию волновой функции дал в 1926 г. Борн: квадрат модуля волновой функции определяет вероятность того , что частица будет обнаружена в пределах объема dV:

dP=|| 2 dV=*dV (17)

где * - комплексно - сопряженная волновая функция.

Величина || 2=* = dP/ dV - имеет смысл плотности вероятности.

Интеграл от (17), взятый по всему пространству, должен равняться единице (вероятность достоверного события Р=1).

 (18)

Выражение (18) называют условием нормировки.

Отметим еще раз, что волновая функция описывает микросостояние частицы, ее волновые свойства и она позволяет ответить на все вопросы, которые имеет смысл ставить. Например, найти энергию и импульс частицы. Для этого следует вычислить следующие частные производные  по координате х и времени t:

откуда

 (19)