
- •Гармонические колебания
- •[Править]Нелинейный маятник
- •Определения
- •Дифференциальное уравнение движения физического маятника
- •Период колебаний физического маятника
- •Векторная диаграмма и применение её при сложении гармонических колебаний одного направления и одинаковой частоты. Биения.
- •Сложения взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Свободные затухающие механические колебания, их дифференциальное уравнение и его решение.
- •Свободные затухающие колебания в электрическом колебательном контуре, их дифференциальное уравнение и его решение.
- •Вынужденные механические колебания, их амплитуда и фаза. Случай резонанса.
- •Вынужденные электромагнитные колебания.
- •Переменный ток в цепях, содержащих резистор, катушку индуктивности и конденсатор. Резистор, конденсатор и катушка индуктивности в цепи переменного тока.
- •Волны в упругой среде. Продольные и поперечные волны. Скорость волны. Длина волны и волновое число. Уравнение бегущей волны.
- •Энергия волны. Поток энергии, его плотность. Вектор Умова. Энергия волны
- •Образование стоячих волн. Уравнение стоячей волны.
- •Звуковые волны и их характеристики. Ультразвук и его применение.
- •Применение ультразвука [править]Диагностическое применение ультразвука в медицине (узи)
- •[Править]Терапевтическое применение ультразвука в медицине
- •[Править]Резка металла с помощью ультразвука
- •[Править]Приготовление смесей с помощью ультразвука
- •[Править]Применение ультразвука в биологии
- •[Править]Применение ультразвука для очистки
- •[Править]Применение ультразвука в гальванотехнике
- •Когерентность и монохроматичность световых волн. Интерференция света. Условия интерференционных максимумов и минимумов.
- •§1 Когерентность и монохроматичность световых волн
- •§2 Интерференция света в тонких плоскопараллельных
- •Условие максимума и минимума интерференции
- •Метод получения когерентных световых волн. Расчет интерференционной картины от двух источников.
- •Интерференция света в тонких пленках.
- •Интерференция света в тонких плёнках
- •Кольцо Ньютона. Применение интерференции света (просветление оптики, интерферометра).
- •Дифракция света. Принцип Гюйгеса-Френеля. Метод зон Френеля.
- •Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на одной щели.
- •Дифракционная решетка и её применение. Дифракционный спектр. Исследование структуры кристаллов.
- •Применение
- •Дифракция на пространственной решетке. Формула Вульфа-Брэгга. Исследование структуры кристаллов.
- •Дисперсия света. Области нормальной и аномальной дисперсии. Применение дисперсии света. Дисперсионный спектр.
- •Дисперсионный спектр
- •Поглощение света. Закон Бугера. Рассеяние света. Закон Рэлея.
- •Закон Бугера — Ламберта — Бера
- •Закон рэлея и его объяснение
- •Естественный и поляризованный свет. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Поляризация света при отражении и преломлении на границе двух диэлектриков
- •Двойное лучепреломление. Поляризованные призмы и поляроиды. Закон Малюса. Двойное лучепреломление
- •§ 193. Поляризационные призмы и поляроиды
- •Закон Малюса
- •Искусственная оптическая анизотропия. Эффект Керра. Вращение плоскости поляризации. Искусственная оптическая анизотропия
- •§ 196. Вращение плоскости поляризации
- •Тепловое излучение и его характеристики. Абсолютно черное тело. Закон Кирхгофа.
- •Закон Стефана-Больцмана. Закон смещения Вина. Второй закон Вина.
- •Распределение энергии в спектре абсолютно черного тела. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа. Квантовая гипотеза и формула Планка.
- •Внешний фотоэффект и его законы. Фотоны. Уравнение Эйнштейна для внешнего фотоэффекта. Фотоэлементы и их применение.
- •Фотоэлементы промышленного назначения
- •Внешний фотоэффект
- •[Править]Законы внешнего фотоэффекта
- •Давление света. Опыт Лебедева. Волновое и квантовое объяснение давления света. Давление света. Опыты п.Н.Лебедева
- •Эффект Комптона и его элементарная теория.
- •Энергия и импульс фотона. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения.
- •Фотоны, энергия, масса и импульс фотона
- •Формула де Бройля. Корпускулярно-волновой дуализм свойств вещества и его опытное обоснование. Волны де Бройля
- •Соотношение неопределенностей. Соотношения неопределённостей Uncertainty relations
- •Волновая функция и её статистический смысл.
- •Общее уравнение Шредингера. Уравнение для стационарных состояний. Принцип причинности в квантовой механике.
- •Формулировка [править]Общий случай
- •Частица в одномерной прямоугольной «потенциальной яме». Принцип соответствия Бора. Понятие о туннельном эффекте.
- •Упрощённое объяснение
- •Принцип соответствия в квантовой механике
- •Опыт Резерфорда по рассеянию альфа-частиц веществом. Ядерная модель атома.
- •Опыты по рассеянию альфа-частиц
- •Неустойчивость атома Резерфорда (Ядерная модель атома)
- •Постулаты Бора. Опыт Франка и Герца.
- •Теория атома водорода по Бору. Затруднение теории Бора. Боровская модель атома
- •Достоинства теории Бора
- •[Править]Недостатки теории Бора
- •Атом водорода в квантовой механике. Главное, орбитальное и магнитное квантовые числа.
- •Спин электрона. Магнитное спиновое квантовое число.
- •Принцип Паули. Распределение электронов в атоме по состояниям.
- •Молекулярные спектры. Комбинационное рассеяние света.
- •Поглощение, спонтанное и вынужденное излучение. Оптические квантовые генераторы (лазеры).
- •§7. Лазеры - оптические квантовые генераторы
- •Понятие о зонной теории твердых тел. Собственная и примесная проводимость полупроводников. Фотопроводимость.
- •Люминесценция твердых тел.
- •Размер, состав и заряд атомного ядра. Массовое и зарядовое числа.
- •Ядерные силы, их основные свойства. Модели ядра.
- •Дефект массы и энергия связи атомного ядра.
- •Радиоактивное излучение и его виды. Закон радиоактивного распада. Правила смещения. Активность источника радиоактивного излучений.
- •Метод наблюдения и регистрации радиоактивных излучений и частиц.
- •Ядерные реакции и их основные типы. Реакция деления. Цепная реакция деления тяжелых ядер. Реакция синтеза атомных ядер.
Закон Бугера — Ламберта — Бера
[править]
Материал из Википедии — свободной энциклопедии
Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.
Закон выражается следующей формулой:
,
где
— интенсивность входящего
пучка,
—
толщина слоя вещества, через которое
проходит свет,
— показатель
поглощения (не
путать с безразмерным показателем
поглощения
,
который связан с
формулой
,
где
—
длина волны).
Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.
Рассеяние света — рассеяние электромагнитных волн видимого диапазона при их взаимодействии с веществом. При этом происходит изменение пространственного распределения, частоты, поляризации оптического излучения, хотя часто под рассеянием понимается только преобразование углового распределения светового потока.
Пусть
и
—
частоты падающего и рассеянного света.
Тогда
Если
— упругое рассеяние
Если
— неупругое рассеяние
— стоксово рассеяние
— антистоксово рассеяние
Рассеиваемый свет даёт информацию о структуре и динамике материала.
Виды рассеяния, свойственные для света:
Рассеяние Рэлея — упругое рассеяние на малых частицах, размером много меньше длины волны.
Рассеяние Ми — упругое рассеяние на крупных частицах.
Рассеяние Мандельштама — Бриллюэна — неупругое рассеяние на колебаниях решётки.
Рассеяние Рамана — неупругое рассеяние на атомных колебаниях в молекуле.
Рассеяние Тиндаля — упругое рассеяние света неоднородными средами.
Закон рэлея и его объяснение
Зависимость интенсивности рассеянного света от длины волны установлена еще в первых теоретических работах Рэлея. Она гласит: интенсивность обратно пропорциональна четвертой степени длины волны (закон Рэлея).
Нетрудно получить этот закон, исходя из представления о вторичных волнах, испускаемых колеблющимися электронами. Амплитуда излучаемой при колебании электрона волны пропорциональна его ускорению (только при наличии ускорения в движении электрона им создается переменное электромагнитное поле и возникает электро-магнитная волна).
Закон Рэлея
Закон Рэлея этот справедлив, если рассеивающие частицы или флуктуационные неоднородности малы по сравнению с длиной волны. В противном случае надо учитывать, что электроны, приходящие в колебание в разных участках элементарной неоднородности, возбуждаются с заметным запаздыванием по фазе. Эго обстоятельство осложняет явление и приводит к иным закономерностям. Так, зависимость от длины волны становится менее заметной, стремясь к закону 1/^2 для сравнительно больших коллоидных частиц и для больших флуктуационных неоднородностей вблизи критической точки.
Тщательные измерения последнего времени позволяют считать, что закон Рэлея для жидкостей соблюдается достаточно хорошо. Нет оснований сомневаться в его справедливости и по отношению к газам и кристаллам, хотя для газов и кристаллов имеются лишь сравнительно грубые измерения.