
- •Гармонические колебания
- •[Править]Нелинейный маятник
- •Определения
- •Дифференциальное уравнение движения физического маятника
- •Период колебаний физического маятника
- •Векторная диаграмма и применение её при сложении гармонических колебаний одного направления и одинаковой частоты. Биения.
- •Сложения взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Свободные затухающие механические колебания, их дифференциальное уравнение и его решение.
- •Свободные затухающие колебания в электрическом колебательном контуре, их дифференциальное уравнение и его решение.
- •Вынужденные механические колебания, их амплитуда и фаза. Случай резонанса.
- •Вынужденные электромагнитные колебания.
- •Переменный ток в цепях, содержащих резистор, катушку индуктивности и конденсатор. Резистор, конденсатор и катушка индуктивности в цепи переменного тока.
- •Волны в упругой среде. Продольные и поперечные волны. Скорость волны. Длина волны и волновое число. Уравнение бегущей волны.
- •Энергия волны. Поток энергии, его плотность. Вектор Умова. Энергия волны
- •Образование стоячих волн. Уравнение стоячей волны.
- •Звуковые волны и их характеристики. Ультразвук и его применение.
- •Применение ультразвука [править]Диагностическое применение ультразвука в медицине (узи)
- •[Править]Терапевтическое применение ультразвука в медицине
- •[Править]Резка металла с помощью ультразвука
- •[Править]Приготовление смесей с помощью ультразвука
- •[Править]Применение ультразвука в биологии
- •[Править]Применение ультразвука для очистки
- •[Править]Применение ультразвука в гальванотехнике
- •Когерентность и монохроматичность световых волн. Интерференция света. Условия интерференционных максимумов и минимумов.
- •§1 Когерентность и монохроматичность световых волн
- •§2 Интерференция света в тонких плоскопараллельных
- •Условие максимума и минимума интерференции
- •Метод получения когерентных световых волн. Расчет интерференционной картины от двух источников.
- •Интерференция света в тонких пленках.
- •Интерференция света в тонких плёнках
- •Кольцо Ньютона. Применение интерференции света (просветление оптики, интерферометра).
- •Дифракция света. Принцип Гюйгеса-Френеля. Метод зон Френеля.
- •Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на одной щели.
- •Дифракционная решетка и её применение. Дифракционный спектр. Исследование структуры кристаллов.
- •Применение
- •Дифракция на пространственной решетке. Формула Вульфа-Брэгга. Исследование структуры кристаллов.
- •Дисперсия света. Области нормальной и аномальной дисперсии. Применение дисперсии света. Дисперсионный спектр.
- •Дисперсионный спектр
- •Поглощение света. Закон Бугера. Рассеяние света. Закон Рэлея.
- •Закон Бугера — Ламберта — Бера
- •Закон рэлея и его объяснение
- •Естественный и поляризованный свет. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Поляризация света при отражении и преломлении на границе двух диэлектриков
- •Двойное лучепреломление. Поляризованные призмы и поляроиды. Закон Малюса. Двойное лучепреломление
- •§ 193. Поляризационные призмы и поляроиды
- •Закон Малюса
- •Искусственная оптическая анизотропия. Эффект Керра. Вращение плоскости поляризации. Искусственная оптическая анизотропия
- •§ 196. Вращение плоскости поляризации
- •Тепловое излучение и его характеристики. Абсолютно черное тело. Закон Кирхгофа.
- •Закон Стефана-Больцмана. Закон смещения Вина. Второй закон Вина.
- •Распределение энергии в спектре абсолютно черного тела. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа. Квантовая гипотеза и формула Планка.
- •Внешний фотоэффект и его законы. Фотоны. Уравнение Эйнштейна для внешнего фотоэффекта. Фотоэлементы и их применение.
- •Фотоэлементы промышленного назначения
- •Внешний фотоэффект
- •[Править]Законы внешнего фотоэффекта
- •Давление света. Опыт Лебедева. Волновое и квантовое объяснение давления света. Давление света. Опыты п.Н.Лебедева
- •Эффект Комптона и его элементарная теория.
- •Энергия и импульс фотона. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения.
- •Фотоны, энергия, масса и импульс фотона
- •Формула де Бройля. Корпускулярно-волновой дуализм свойств вещества и его опытное обоснование. Волны де Бройля
- •Соотношение неопределенностей. Соотношения неопределённостей Uncertainty relations
- •Волновая функция и её статистический смысл.
- •Общее уравнение Шредингера. Уравнение для стационарных состояний. Принцип причинности в квантовой механике.
- •Формулировка [править]Общий случай
- •Частица в одномерной прямоугольной «потенциальной яме». Принцип соответствия Бора. Понятие о туннельном эффекте.
- •Упрощённое объяснение
- •Принцип соответствия в квантовой механике
- •Опыт Резерфорда по рассеянию альфа-частиц веществом. Ядерная модель атома.
- •Опыты по рассеянию альфа-частиц
- •Неустойчивость атома Резерфорда (Ядерная модель атома)
- •Постулаты Бора. Опыт Франка и Герца.
- •Теория атома водорода по Бору. Затруднение теории Бора. Боровская модель атома
- •Достоинства теории Бора
- •[Править]Недостатки теории Бора
- •Атом водорода в квантовой механике. Главное, орбитальное и магнитное квантовые числа.
- •Спин электрона. Магнитное спиновое квантовое число.
- •Принцип Паули. Распределение электронов в атоме по состояниям.
- •Молекулярные спектры. Комбинационное рассеяние света.
- •Поглощение, спонтанное и вынужденное излучение. Оптические квантовые генераторы (лазеры).
- •§7. Лазеры - оптические квантовые генераторы
- •Понятие о зонной теории твердых тел. Собственная и примесная проводимость полупроводников. Фотопроводимость.
- •Люминесценция твердых тел.
- •Размер, состав и заряд атомного ядра. Массовое и зарядовое числа.
- •Ядерные силы, их основные свойства. Модели ядра.
- •Дефект массы и энергия связи атомного ядра.
- •Радиоактивное излучение и его виды. Закон радиоактивного распада. Правила смещения. Активность источника радиоактивного излучений.
- •Метод наблюдения и регистрации радиоактивных излучений и частиц.
- •Ядерные реакции и их основные типы. Реакция деления. Цепная реакция деления тяжелых ядер. Реакция синтеза атомных ядер.
Дисперсионный спектр
Следствием дисперсии является разложение света при прохождении его через призму на составляющие с различными длинами волн (монохроматические лучи). При разложении белого света, т.е света в видимом диапазоне, содержащего длины волн в диапазоне 380—760 нм, возникает радужная полоска (рис. 17.32), которую называют спектром.
Рис. 17.32
Впервые подробно исследовал дисперсию света И. Ньютон. Он доказал, что не призма окрашивает свет, а белый свет — сложный, он состоит из простых (монохроматических) лучей, которые при прохождении через призму отклоняются, но не разлагаются, и только в совокупности монохроматические лучи дают ощущение белого света.
Другой важный вывод, который сделал И. Ньютон: лучи различного цвета преломляются по-разному.
Таким образом, с помощью призмы, как и с помощью дифракционной решетки, можно получить спектр некоторого излучения. В дисперсионном и дифракционном спектрах имеются различия: 1) для дифракционного спектра можно создать равномерную шкалу по α. А так как функция n=f(λ) не линейная, то для дисперсионного спектра этого сделать нельзя, дисперсионный спектр не равномерный, он сжат в красной области и растянут в фиолетовой; 2) в дисперсионном спектре большее отклонение от первоначального направления испытывают фиолетовые лучи, в дифракционном — красные; 3) в дифракционном спектре наблюдается несколько порядков спектра, в дисперсионном — один.
Поглощение света. Закон Бугера. Рассеяние света. Закон Рэлея.
Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.
Поглощение света в веществе описывается законом Бугера*:
(187.1)
где I0 и I — интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, — коэффициентпоглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х=1/ интенсивность света I по сравнению с I0 уменьшается в е раз.
* П. Бугер (1698—1758) — французский ученый.
Коэффициент поглощения зависит от длины волны (или частоты ) и для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10–12—10–11 м) наблюдаются резкие максимумы (так называемыйлинейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуется полосами поглощения (примерно 10–10—10–7 м).
Коэффициент поглощения для диэлектриков невелик (примерно 10–3—10–5 см–1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.
Коэффициент поглощения для металлов имеет большие значения (примерно 103—105 см–1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.
На рис. 271 представлены типичная зависимость коэффициента поглощения от длины волны света и зависимость показателя преломления n от в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с уменьшением ). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.
Зависимостью коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров,которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.
Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.