
- •Утверждено редакционно-издательским советом Иркутского государственного технического университета
- •Chapter 1.
- •Unit 1. A Brief Outline of the Petroleum Chain
- •A. Comprehension
- •B. Vocabulary practice
- •C. Discussion
- •Comprehension
- •Химический состав нефти
- •Comprehension
- •Vocabulary practice
- •Discussion
- •Accumulation in Reservoir Beds
- •В. Vocabulary practice
- •Unit 5. Oil Traps
- •Structural traps
- •Stratigraphic traps
- •В.Vocabulary practice
- •Discussion
- •A. Comprehension
- •B. Vocabulary Practice
- •C. Discussion
- •Comprehension
- •Vocabulary practice
- •A. Comprehension
- •Vocabulary practice
- •Discussion
- •Comprehension
- •Comprehension
- •Vocabulary Practice
- •Геофизические методы при поисках залежей нефти и газа
- •Vocabulary practice
- •C. Discussion
- •Comprehension
- •Vocabulary practice
- •Cementing
- •Discussion
- •Comprehension
- •Vocabulary practice
- •Coiled tubing
- •Discussion
- •A. Comprehension
- •B. Vocabulary practice
- •Cold Production
- •C. Discussion
- •A. Comprehension
- •B. Vocabulary practice
- •A. Comprehension
- •B. Vocabulary practice
- •C. Discussion
- •Comprehension
- •Vocabulary Practice
- •Нефтепромысловое дело
- •Comprehension
- •Comprehension
- •1. Identifying the Rocks
- •2. The Importance of Environmental Assessment
- •3. Field Appraisal
- •4. Miscible methods
- •5. Thermal methods
- •6. The turbodrill
- •7. Surface equipment
- •8. Well Control
- •9. Data Processing
- •10. Finding Petroleum Traps
- •11. Overview of the Oil and Gas Exploration and Production Process
- •A ppendix 2. Interpreting charts, tables, graphs and diagrams
- •Список использованной литературы
- •Oil and gas basics Учебное пособие по английскому языку для специалистов нефтегазового дела
- •664074, Иркутск, ул. Лермонтова, 83
5. Thermal methods
There are many reservoirs, usually shallow, that contain oil which is too viscous to produce well. Nevertheless, thr__ __ __ __1) the appli__ __ __ __ __ __2) of he__ __3), economical reco__ __ __ __4) from th__ __ __5) reservoirs i__6) possible. He__ __ __7) crude oi__ __8), which m__ __9) have a visc__ __ __ __ __10) up t__11) one mil__ __ __ __12) times th__ __13) of wa__ __ __14), will sh__ __15) a reduction i__16) viscosity b__17) a factor o__18) 10 for ea__ __19) temperature incr__ __ __ __20) of 50° C (90° F). T__ __21) most succe__ __ __ __ __22) way t__23) raise t__ __24) temperature o__25) a reservoir i__26) by t__ __27) injection o__28) steam. I__29) the mo__ __30) widespread met__ __ __31), called st__ __ __32) cycling, a quan__ __ __ __33) of st__ __ __34) is inje__ __ __ __35) through a we__ __36) into a form__ __ __ __ __37) and all__ __ __ __38) time t__39) condense. Conden__ __ __ __ __ __40) in t__ __41) reservoir rele__ __ __ __42) the he__ __43) of vapori__ __ __ __ __ __44) that w__ __45) required t__46) create t__ __47) steam. Th__ __48) the sa__ __49) well i__50) put o__51) production. Af__ __ __52) some wa__ __ __53) production, hea__ __ __54) oil fl__ __ __55) into t__ __56) well bo__ __57) and i__58) lifted t__59) the sur__ __ __ __60). Often t__ __61) cycle c__ __62) be repe__ __ __ __63) several ti__ __ __64) on t__ __65) same we__ __66). A less com__ __ __67) method invo__ __ __ __68) the inje__ __ __ __ __69) of st__ __ __70) from o__ __71) group o__72) wells wh__ __ __73) oil i__74) continuously prod__ __ __ __75) from ot__ __ __76) wells.
A__77) alternate met__ __ __78) for hea__ __ __ __79) a reservoir invo__ __ __ __80) the combu__ __ __ __ __81) of a pa__ __82) of t__ __83) reservoir o__ __84) and i__85) called i__86) situ combu__ __ __ __ __87). Large quant__ __ __ __ __88) of compr__ __ __ __ __89) air mu__ __90) be inje__ __ __ __91) into t__ __92) oil zo__ __93) to sup__ __ __ __94) the combu__ __ __ __ __95). The opt__ __ __ __96) combustion tempe__ __ __ __ __ __97) is 500° C (930° F). T__ __98) hot combu__ __ __ __ __99) products mo__ __100) through t__ __101) reservoir t__102) promote o__ __103) production. In situ combustion has not seen widespread use.
6. The turbodrill
One variation in rotary drilling employs a fluid-powered turbine at the bottom of the borehole to produce the rotary motion of the bit. Known a__1) the turbo__ __ __ __ __2), this instr__ __ __ __ __3) is ab__ __ __4) nine met__ __ __5) long a__ __6) is ma__ __7) up o__8) four ma__ __ __9) parts: t__ __10) upper bea__ __ __ __11), the tur__ __ __ __12), the lo__ __ __13) bearing, a__ __14) the dr__ __ __15) bit. T__ __16) upper bea__ __ __ __17) is atta__ __ __ __18) to t__ __19) drill pi__ __20), which eit__ __ __21) does n__ __22) rotate o__23) rotates a__24) a slow ra__ __25) (6 to 8 revol__ __ __ __ __ __26) per min__ __ __27)). The dr__ __ __28) bit, mean__ __ __ __ __29), rotates a__30) a much fas__ __ __31) rate (500 t__32) 1,000 revolutions p__ __33) minute) th__ __34) in conven__ __ __ __ __ __35) rotary dril__ __ __ __36). The po__ __ __37) source f__ __38) the turbo__ __ __ __ __39) is t__ __40) mud pu__ __41), which for__ __ __42) mud thr__ __ __ __43) the dr__ __ __44) pipe t__45) the tur__ __ __ __46). The m__ __47) is dive__ __ __ __48) onto t__ __49) rotors o__50) the tur__ __ __ __51), turning t__ __52) lower bea__ __ __ __53) and t__ __54) drill b__ __55). The m__ __56) then pas__ __ __57) through t__ __58) drill b__ __59) to sc__ __ __60) the ho__ __61) and ca__ __ __62) chips t__63) the sur__ __ __ __64). The turbo__ __ __ __ __65) is cap__ __ __ __66) of ve__ __67) fast dril__ __ __ __68), but t__ __69) bit a__ __70) bearings we__ __71) quickly i__72) the ha__ __ __73) environment. Turbodrills were widely used in the former Soviet republics of Russia and Central Asia, but they are rare elsewhere.