
- •Содержание
- •Глава III. Обеспечение безопасности спасательных
- •1.1.1. Основные определения
- •1.1.2. Классификация опасных и вредных факторов
- •1.1.3. Номенклатура контролируемых параметров опасныхи вредных факторов
- •1.1.4. Особенности воздействия опасных и вредных факторов
- •1.2. Система технической защиты от опасных и вредных факторов
- •1.2.1. Особенности построения и элементы системы технической защиты
- •1.2.2. Нормирование условий труда
- •1.2.3. Исключение неблагоприятных факторов
- •1.2.4. Нейтрализация опасностей и вредностей в источниках
- •1.2.5. Установление опасных зон
- •1.2.7. Защитные экраны
- •1.2.8. Защита временем
- •1.2.9. Дополнительные средства технической зашиты
- •2. Обеспечение безопасности спасательных работ в зонах пожаров, разрушений и воздействия электрического тока
- •2.1. Обеспечение безопасности спасательных работ в зонах пожаров и разрушений
- •2.1.1. Краткая характеристика процесса горения
- •2.1.2. Условные зоны пожара и их характеристики
- •2.1.3. Фазы развития пожара
- •2.1.4. Основные опасные факторы пожара
- •2.1.5. Требования по обеспечению безопасности спасательных работ
- •Вещества на единицу площади пола
- •Степень переносимости человеком тепловой радиации
- •Защитного экрана
- •2.1.6. Основные требования безопасности в условиях пожара
- •2.1.7. Особенности обеспечения безопасности при ведении работ
- •2.1.8. Требования безопасности при деблокировании пострадавших из завалов
- •2.1.9. Требования безопасности при спасении пострадавших
- •2.1.10. Оценка показателей надежности страховочных систем
- •Верхней страховки
- •Нижней страховки
- •2.1.11. Обеспечение безопасности аварийно-восстановительных работ
- •2.2. Особенности обеспечения безопасности спасательных работ в зонах воздействия электрического тока
- •2.2.1. Основные причины электротравматизма
- •2.2.2. Действие электрического тока на организм человека
- •Распределение вероятности ощущения в зависимости от значений тока
- •Распределение вероятности неотпускания в зависимости от силы тока
- •Предельно допустимые уровни напряжений прикосновения и токов
- •Значения отпускающих токов для различных частот
- •2.2.3. Условия поражения человека электрическим током
- •Нейтралью (а) и эквивалентная схема замещения (б)
- •С заземленным полюсом (а) и эквивалентная схема замещения (б)
- •С изолированной нейтралью
- •С глухозаземленной нейтралью
- •2.2.4. Способы защиты от вредного воздействия электрического тока
- •2.2.5. Классификация электроустановок и условий работ
- •3.1.1. Характеристика излучений. Основные термины и определения
- •3.1.2. Доза облучения
- •Значения взвешивающих коэффициентов для различных видов излучения wr
- •Взвешивающие коэффициенты wt для тканей и органов при расчете эффективной дозы
- •3.1.3. Нормирование воздействия ионизирующих излучений
- •3.2. Особенности обеспечения безопасности спасательных работ в зонах радиоактивного загрязнения
- •3.2.1. Принципы обеспечения безопасности личного состава
- •3.2.2. Основные мероприятия по обеспечению безопасности личного состава
- •3.2.3. Использование средств индивидуальной защиты
- •3.2.4. Организация санитарно-пропускного режима
- •Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты, част/(см2 ´ мин)
- •Допустимые уровни радиоактивного загрязнения поверхности транспортных средств, част/(см2´ мин)
- •3.2.5. Обеспечение безопасности личного состава в пункте временной дислокации
- •3.2.6. Радиационная разведка пункта временной дислокации
- •3.2.7. Обеспечение безопасности при транспортировке
- •4. Обеспечение безопасности спасательных работ в зонах химического заражения
- •4.1. Характеристика опасных и вредных факторов
- •4.1.1. Опасные химические вещества, их классификация
- •4.1.2. Токсические характеристики охв
- •Характеристика классов опасности вредных веществ
- •Характеристика вредных веществ по степени их опасности
- •Основные токсические характеристики наиболее распространенных охв
- •4.1.3.Характеристика химических аварий
- •4.1.4. Характеристика очага химического поражения
- •4.2. Особенности обеспечения безопасности спасательных работ в зонах химического заражения
- •4.2.1. Основные мероприятия по обеспечению безопасности личного состава
- •4.2.2. Обеспечение безопасности при проведении разведки
- •4.2.3. Требования безопасности при обваловании проливов, сборе
- •4.2.4. Требования безопасности при выжигании проливов горючих охв
- •4.2.5. Требования безопасности при нейтрализации пролива охв
- •4.2.6.Требования безопасности при засыпке жидкой фазы опасного вещества
- •4.2.7. Требования безопасности при постановке жидкостных завес
- •4.2.8. Обеспечение защиты личного состава
- •5.1.1. Характеристика опасных и вредных факторов
- •5.1.2. Особенности обеспечения безопасности работ
- •5.1.3. Обеспечение безопасности при эвакуации населения
- •5.2. Обеспечение безопасности аварийно-спасательных работ в зонах затоплений
- •5.2.1. Характеристика опасных и вредных факторов
- •5.2.2. Требования безопасности при подготовке к проведению
- •5.2.3. Требования безопасности при проведении спасательных работ
- •Пределы применимости плавсредств
- •Допустимая глубина преодолеваемого брода, м
- •5.2.4. Требования безопасности в аварийных ситуациях
- •6. Обеспечение безопасности спасательных работ в условиях горной местности
- •6.1. Характеристика опасных и вредных факторов
- •Комплекс опасных факторов, воздействующих на спасателей при ведении пср в горных условиях
- •6.2. Адаптация спасателей к работе в горных условиях
- •Охлаждающее действие ветра, выраженное через эквивалентную температуру
- •6.3. Особенности обеспечения безопасности спасательных работ в горах
- •6.4. Страховка
- •6.5. Требования безопасности при ведении пср в горах
С глухозаземленной нейтралью
Следовательно, обувь и пол могут существенно повлиять на исход поражения электрическом током. Например, при Rоб = Rп= Rн = 25 кОм ток, проходящий через тело человека, составит:
-
мА, (3.26)
что может вызвать только явление ощущения тока.
Однако на защитные свойства обуви и пола рассчитывать при ведении аварийно-спасательных работ просто не приходится, так как там имеется большое количество машин, механизмов, железобетонных конструкций, непосредственно связанных с землей. В этих случаях путь тока не проходит через обувь или пол помещения, и тогда, как было рассмотрено выше, единственным элементом, ограничивающим ток, проходящий через человека, будет его сопротивление. То есть при Rоб = Rп = Rн = 0:
-
. (3.27)
При однофазном включении человека в однофазные и трехфазные сети с заземленной нейтралью величина тока, проходящего через человека, также представляет смертельную опасность. Однако в ряде случаев – при наличии обуви с хорошей изоляцией и сухого деревянного пола – опасность поражения электрическим током может быть существенно снижена.
Однофазное включение в сеть с изолированной нейтралью представляет наименьшую опасность по фактору поражения электрическим током при соответствующем контроле за сопротивлением изоляции. Однако это преимущество снижается при росте емкости сети.
Что касается взрыво- и пожароопасности, то сети с изолированной нейтралью менее опасны по этому фактору, поскольку при пробое изоляции или замыкании фазы на землю в них проходят значительно меньшие токи.
Опасность поражения человека при растекании тока в земле. Пробой изоляции, замыкание электрической цепи на землю или преднамеренное соединение электрической цепи на землю вызывают растекание тока в земле. Оно обусловлено появлением разности потенциалов между отдельными точками земли или между заземленным электрооборудованием и землей.
В наиболее простом случае, например при замыкании токоведущего провода на землю, его можно рассматривать в виде контакта полусферы с землей, имеющей однородное удельное сопротивление ρ.
Принято считать, что линии тока в земле идут по радиусам от центра полусферы. Пространство вокруг полусферы (заземлителя), где наблюдается прохождение тока замыкания на землю, называется полем растекания.
Изменение потенциала φ вдоль линий тока на поверхности земли подчиняется закону:
-
, (3.28)
где r – линейное сопротивление грунта, Ом·м, х – расстояние вдоль линии тока, м.
График формулы (3.28) представляет собой гиперболу, в соответствии с которой определяется распределение потенциалов по поверхности земли (рис. 3.13). Такое распределение объясняется тем, что сечение земли, через которое проходит ток, возрастает во второй степени от длины радиуса полусферы.
Рис. 3.13. Распределение потенциалов при замыкании тока на землю
Наибольшее сопротивление растеканию тока оказывают слои земли вблизи заземлителя, поскольку ток здесь проходит по сечению малого размера. С увеличением расстояния по линии тока сечение возрастает, и сопротивление растеканию тока резко падает. Этим и объясняется, что наибольшее изменение потенциала jmax происходит в близи заземлителя. Точки почвы, удаленные от заземлителя более чем на 20 м, практически имеют нулевой потенциал (рис. 3.13).
Напряжение между полусферой и землей Uз при x = r составляет:
-
(3.29)
откуда:
-
(3.30)
Величина R3 называется сопротивлением растеканию тока в землю. Напряжение прикосновения Unp в свою очередь будет определяться разностью потенциалов между точкой входа тока в землю и какой-либо точкой в поле растекания тока:
-
(3.31)
Из зависимости (3.31) и рис. 3.13 следует, что наибольшая величина напряжения прикосновения Uпр будет при х = ¥.
Таким образом, прикасаясь к электрооборудованию, находящемуся в аварийном состоянии и имеющему выносную связь с землей, человек может быть поражен напряжением прикосновения.
При нормальном режиме работы электроустановки допустимо значение Uпр = 2 В, а ток, проходящий через человека, Iч ≤ 0,3 мА. В аварийном режиме, т.е. при пробое изоляции, допустимо значение напряжения прикосновения Uпр = 36 В, и тока, проходящего через человека, Iч = 6 мА (при действии более 1 с). Для электробытовых установок эти параметры не должны превышать соответственно 12 В и Iч = 2 мА.
Другим видом опасности при явлении растекания тока в земле может быть опасность шагового напряжения Uш.
Шаговое напряжение определяется разностью потенциалов, над которой находятся ноги человека (рис. 2.13). Если одна нога человека касается земли на расстоянии х от точки контакта провода с землей, а другая находится на расстоянии х + а, то шаговое напряжение будет равно:
-
. (3.32)
Наибольшая опасность возникает, если одной ногой человек касается провода, а другая в это время стоит на земле. В этом случае напряжение шага будет иметь максимальное значение:
-
. (3.33)
По мере удаления от заземлителя опасность шагового напряжения снижается и на расстоянии 20 м не представляет опасности.
Опасность шагового напряжения может быть представлена следующим примером. Пусть радиус заземлителя r = 1м, удельное сопротивление грунта ρ = 100 Ом×м, ток короткого замыкания I3 = 100 А, расстояние шага человека а = 0,8 м.
В соответствии с (3.30) сопротивление растеканию тока на землю будет:
-
Ом.
Напряжение относительно земли по зависимости (3.29) составит:
U3 = I3·R3 = 100×15,9 = 1590 В.
Тогда наибольшее значение напряжения шага в соответствии с (3.33) составит:
-
В.