
- •М инистерство образования и науки республики казахстан атырауский институт нефти и газа
- •Кафедра «Электроэнергетика»
- •Содержание
- •Введение
- •Программа обучения по дисциплине (syllabus) для студента
- •2.Цели и задачи изучаемой дисциплины
- •3. Содержание и план изучения учебной дисциплины
- •Контрольные вопросы для подготовки к экзамену
- •5. Рекомендуемая литература
- •5.1 Основная литература (ол)
- •5.2.Дополнительная литература (дл)
- •Методические указания (му)
- •5.4. Технические средства
- •График выполнения и сдачи заданий по дисциплине
- •6.1 Тематический план и сроки сдачи заданий по срсп
- •Задание для срс
- •7. Контроль и оценка результатов обучения
- •Итоговая оценка знаний студентов по дисциплине
- •3. Лекционный комплекс Лекция 1. Введение. Переходные процессы в электроэнергетических системах Основные понятия и определения
- •Термины и определения
- •Контрольные вопросы
- •Лекция 2 Тема: Токи короткого замыкания. Причины возникновения и последствия коротких замыканий. Назначение расчетов коротких замыканий и общие сведения о расчетных условиях
- •Природа возникновения коротких замыканий
- •Виды повреждений в трехфазных сэс
- •Последствия коротких замыканий
- •Возникновения различных видов кз в % в зависимости от напряжения сети
- •Основные причины, вызывающие электромагнитные переходные процессы:
- •Для предотвращения коротких замыканий и уменьшение и последствие необходимо:
- •Назначение расчетов коротких замыканий
- •Контрольные вопросы
- •Лекция 3. Тема: Трехфазное короткое замыкание в электрической цепи
- •Методы расчета тока трехфазного короткого замыкания
- •Ударный ток короткого замыкания
- •Действующее значение тока кз и его составляющих
- •Контрольные вопросы
- •Лекция 4 Тема: Составление расчетной схемы и схемы замещения
- •Применение системы относительных единиц
- •«Преобразование схем замещения»
- •Точное приведение элементов схемы замещения в именованных единицах
- •Приближенное приведение схемы замещения в именованных единицах
- •Контрольные вопросы
- •Лекция 5 Тема: Несимметричные переходные процессы
- •Метод симметричных составляющих
- •Схемы отдельных последовательностей
- •Контрольные вопросы
- •Лекция 6 Тема: Установившийся режим короткого замыкания
- •Контрольные вопросы
- •Лекция 7 Тема: Расчет коротких замыкании в электроустановках переменного тока напряжением до 1кВ
- •Дополнительные факторы, подлежащие учету при расчете токов кз
- •Особенности выбора расчетных условия
- •Расчет начального значения периодической составляющей тока трехфазного короткого замыкания
- •Контрольные вопросы
- •Лекция 8 Тема: Расчет коротких замыкании в электроустановках переменного тока напряжением выше 1кВ
- •Расчет начального действующего значения периодической составляющей тока короткого замыкания от электрических машин
- •Расчет апериодической составляющей тока короткого замыкания в произвольной схеме
- •Существует несколько методов ее определения.
- •Способы определения ударного коэффициента и ударного тока короткого замыкания
- •Учет комплексной нагрузки при расчете токов короткого замыкания
- •Типовой состав комплексной нагрузки
- •Контрольные вопросы
- •Лекция 9 Тема: Учет синхронных и асинхронных электродвигателей при расчете токов короткого замыкания
- •Учет комплексной нагрузки при расчетах коротких замыканий
- •Учет сопротивления электрической дуги
- •Особенности расчета коротких замыканий в электроустановках постоянного тока с аккумуляторными батареями
- •Параметры аккумулятора типа ск-1
- •Расчет токов короткого замыкания в установках до 1000в
- •Контрольные вопросы
- •Лекция 10 Тема: Статическая устойчивость. Основные понятия и определения устойчивости
- •Допущения, принимаемые при анализе устойчивости
- •Задачи расчета устойчивости электрических систем
- •Статическая устойчивость нагрузки
- •Статическая устойчивость простейшей системы
- •Контрольные вопросы
- •Лекция 11 Тема: Динамическая устойчивость. Основные понятия и определения устойчивости
- •Динамическая устойчивость двигателей нагрузки
- •Динамическая устойчивость при к.З. На линии
- •Мероприятия по улучшению устойчивости электрических систем
- •Мероприятия, основанные на улучшении параметров элементов электрической системы
- •А) последовательное; б) параллельное включение;
- •Контрольные вопросы
- •Лекция 12 Тема: Расчет термического и электродинамического воздействия токов короткого замыкания на проводники и электрооборудования
- •Термическое действие токов короткого замыкания
- •Определение интеграла Джоуля и термически эквивалентного тока короткого замыкания
- •Термическое воздействие токов короткого замыкания на проводники
- •Электродинамические действие токов короткого замыкания
- •Контрольные вопросы
- •Лекция 13 Тема: Выбор и проверка электрических аппаратов и проводников
- •Выбор по условиям рабочих продолжительных режимов
- •Проверка на термическую стойкость. Проверка проводников. Проверка электрических аппаратов
- •Предельно допустимые температуры нагрева проводников при кз
- •Проверка электрических аппаратов
- •Проверка на электродинамическую стойкость
- •Расчетные схемы шинных конструкции
- •Основные характеристики материалов шин
- •Проверка гибких проводников линии электропередачи и распределительных устройств на возможность их опасного сближения и схлестывания при коротких замыканиях
- •Контрольные вопросы
- •Лекция 14 Тема: Ограничение токов короткого замыкания. Постановка задачи. Методы и средства ограничения токов короткого замыкания
- •Методы и средства ограничения токов короткого замыкания
- •Классификация методов и средств ограничения токов короткого замыкания
- •Схемные решения
- •А) продольное разделение сетей; б) поперечное разделение сетей;
- •Деления сети
- •А) исходная схема; б) деление ру на две части; в) схема с удлиненными блоками;
- •А) исходная схема; б) деление ру на две части; в) схема с удлиненными блоками;
- •А) исходная схема; б) разрыв автотрансформаторных связей между двумя или тремя ру повышенных напряжений;
- •Общие требования к токоограничивающим устройствам
- •Токоограничивающие реакторы
- •Реакторы с линейной характеристикой
- •Реакторы с нелинейной характеристикой
- •Токоограничивающие коммутационные аппараты
- •Токоограничивающие устройства трансформаторного типа
- •Контрольные вопросы
- •Лекция 15 Тема: Однократная поперечная и продольная несимметрия
- •Однофазное короткое замыкание
- •Двухфазное короткое замыкание
- •Двухфазное короткое замыкание на землю
- •Учет переходного сопротивления в месте замыкания
- •Разрыв одной фазы трехфазной цепи.
- •Контрольные вопросы
- •4. Практические занятия Практическая работа № 1 Тема: Определение мощности нагрузки
- •Практическая работа № 2 Тема: Расчет токов короткого замыкания
- •Практическая работа № 3 Тема: Расчет начального действующего значения периодической составляющей тока короткого замыкания
- •3.1. Расчет составляющей тока трехфазного короткого замыкания за блоком генератор-трансформатор
- •Методика расчета
- •Практическая работа № 4
- •4.1. Расчет составляющей тока трехфазного короткого замыкания синхронного генератора
- •Методика расчета
- •Практическая работа № 5 Тема: Учет изменения параметров в цепи при расчете токов короткого замыкания
- •Практическая работа № 6 Тема: Расчет токов короткого замыкания для ад и сд
- •Практическая работа № 7 Тема: Проверка электрооборудования на термическую стойкость при коротких замыканиях
- •7.1. Проверить на термическую стойкость при кз выключатель типа вмпэ-10-630-20 уз
- •7.2. Проверить на термическую стойкость при кз выключатель типа вмт-110б-20/1000у1
- •Практическая работа № 8 Тема: Проверка электрооборудования на электродинамическую стойкость при коротких замыканиях
- •8.1. Проверить на электродинамическую стойкость при кз изолятора
- •Методика расчета
- •8.2. Проверить на электродинамическую стойкость при кз трехфазную шинную конструкцию - изолятора
- •Методика расчета
- •Практическая работа № 9 Тема: Эквивалентная электрическая схема замещения
- •Схемы замещения трансформаторов, автотрансформаторов и сдвоенных реакторов. Определение их индуктивных сопротивлений
- •Расчетные выражения для определения приведенных значений сопротивлений
- •Формулы для определения реактивных сопротивлений элементов сэс
- •Практическая работа № 10 Тема: Ограничение токов короткого замыкания
- •А) несекционированное; б) секционированное;
- •Общие требования к токоограничивающим устройствам
- •Практическая работа № 11 Тема: Выбор токоограничивающих реакторов
- •Токоограничивающие реакторы
- •Методика расчета
- •Технические данные реактора
- •Практическая работа № 12 Тема: Выбор токоведущих частей и аппаратов Расчетные условия для выбора проводников и аппаратов по продолжительным режимам работы
- •12.1. Выбор сечения шин
- •Параметры отдельных элементов:
- •Методика расчета
- •12.2. Выбор сборных шин 110 кВ
- •Методика расчета
- •Выбор допустимого сечения кабелей, питающих местных потребителей электроэнергии, с учетом установленных типов линейных реакторов
- •Практическая работа № 13 Тема: Выбор кабелей
- •Кабели, рекомендуемые для прокладки в земле и воздухе
- •Методика расчета
- •13.1. Выбор сечение кабеля
- •Методика расчета
- •Решение Расчетный ток нагрузки на ру-10 кВ тп
- •Проверка сечения кабеля асб2л 3х70 по экономической плотности тока
- •Проверка сечения кабеля на термическую устойчивость к действию токов короткого замыкания
- •Проверка по потере напряжения
- •Практическая работа № 14 Тема: Схемы электрических соединений на стороне 6-10 кВ
- •14.1. Схема с одной системой сборных шин
- •А) несекционированных выключателем; б) секционированных выключателем;
- •14.2. Схема с двумя системами сборных шин
- •14.3. Схемы электрических соединений на стороне 35 кВ и выше Упрощенные схемы ру
- •А) без выключателя вн; б) с отделителем вн; в) с выключателем вн;
- •14.4. Кольцевые схемы
- •А) схема треугольника; б) схема четырехугольника; в) схема шестиугольника;
- •Практическая работа № 15 Тема: Схемы электроснабжения собственных нужд подстанции
- •А) с оперативным переменным током; б) с оперативным постоянным током;
- •Методика расчета
- •15.1. Выбрать мощность трансформаторов на узловой подстанции
- •Методика расчета
- •Контрольные задания
- •Темы курсовых проектов по электрически сети и системам
- •Исходные данные к курсовому проекту
- •7. Требования к оформлению расчетных работ
А) последовательное; б) параллельное включение;
То обстоятельство, что система сохраняет статическую устойчивость в установившемся режиме работы, еще не позволяет утверждать, что она окажется устойчивой и при резких внезапных нарушениях режима ее работы, подобных короткому замыканию (к.з.), отключению генераторов или линий и т.д. Эта сторона проблемы должна быть исследована самостоятельно и затрагивает круг вопросов, относящихся к так называемой «динамической устойчивости» электрических систем.
Если в исследовании статической устойчивости приходится иметь дело с малыми возмущениями рабочего режима работы системы (перерастающими в выпадение из синхронизма при неустойчивости системы), то предметом исследования динамической устойчивости являются значительные возмущения, причем существенное значение приобретают самый характер и размеры возмущения.
Для
выяснения принципиальных положений
динамической устойчивости рассмотрим
явления, возникающие при внезапном
отключении одной из двух параллельных
цепей линии электропередачи (рисунок
11.3),
связывающей удаленную станцию с шинами
неизменного напряжения. Схема замещения
электропередачи в нормальном режиме
(до отключения цепи) представлена на
рисунок 11.4,а.
Индуктивное сопротивление системы,
равное
,
определяет амплитуду характеристики
мощности в этих условиях:
Рисунок 11.3 – Принципиальная схема электропередачи при отключении цепи |
Рисунок 11.4 - Схема замещения электропередачи при нормальном режиме (а) и при отключении цепи (б). |
Опуская
влияние переходных электромагнитных
процессов в генераторах, можно установить,
что при отключении одной из цепей линии
электропередачи индуктивное
сопротивление системы получает новое
значение (рисунок 11.4,б):
- большее, чем в нормальном режиме,
поскольку индуктивное сопротивление
линии при отключении цепи возрастает
с 0,5
до
.
Амплитуда характеристики мощности при
отключенной цепи соответственно
уменьшается до
.
Характеристики мощности в условиях
нормального режима и при отключенной
цепи показаны на рисунке 11.5.
Если режим работы, предшествовавший
отключению цепи, определялся точкой а
на
характеристике мощности
(
)
нормального режима при передаваемой
мощности
и
угле
,
то после отключения этому режиму должна
соответствовать новая характеристика
мощности
(
),
причем нетрудно установить, какая
именно точка этой характеристики будет
определять режим в момент отключения
цепи. Этой точкой является точка b
при том же значении угла
,
что и в нормальном режиме. Угол
сохраняет свое значение
в момент отключения, поскольку вектор
э. д. с. генератора E
может
перемещаться относительно вектора
напряжения приемной системы
U
только
при изменениях частоты вращения ротора
генератора. Последняя же не может
претерпевать скачкообразных изменений
в силу существования механической
инерции у ротора генератора.
В момент отключения цепи режим работы изменяется и характеризуется не точкой а, а точкой b на новой характеристике, что обусловливает внезапное уменьшение мощности генератора. Мощность турбины остается при этом неизменной и равной , так как регуляторы турбин реагируют на изменение частоты вращения агрегата, которая в момент отключения цепи сохраняет свое нормальное значение, как это только что было отмечено.
В
дальнейшем скорость машины будет
изменяться, однако и в этой стадии
процесса можно в первом приближении
считать, что регуляторы не успевают
сколько-нибудь заметно повлиять на
мощность, развиваемую турбиной.
Неравенство мощностей, а следовательно,
и моментов на валу турбины и генератора
вызывает появление избыточного момента,
под влиянием которого агрегат
турбина-генератор начинает ускоряться.
Связанный с ротором генератора
вектор э. д. с. E
начинает вращаться быстрее, чем
вращающийся с неизменной синхронной
угловой скоростью
вектор напряжения шин приемной системы
U.
Изменения скорости v
перемещения вектора э. д. с. генератора
E
относительно напряжения шин приемной
системы U,
представляющей разность угловых
скоростей вращения векторов E
и
U,
показаны на рисунке 11.5.
Возникновение относительной скорости вращения v приводит к увеличению угла , и на характеристике мощности генератора при отключенной цепи рабочая точка перемещается из точки b по направлению к точке с. При этом мощность генератора начинает возрастать. Однако вплоть до точки с мощность турбины все еще превышает мощность генератора и избыточный момент, хотя и уменьшается, но сохраняет свой знак, благодаря чему относительная скорость вращения непрерывно возрастает. В точке с мощности турбины и генератора вновь уравновешивают друг друга и избыточный момент равен нулю. Однако процесс не останавливается в этой точке, так как относительная скорость вращения ротора достигает здесь наибольшего значения и ротор проходит точку с по инерции.
При
дальнейшем росте угла
мощность генератора уже превышает
мощность турбины и избыточный момент
изменяет свой знак.
Он
начинает тормозить агрегат. Относительная
скорость вращения
теперь уменьшается и в некоторой точке
d
становится равной нулю. Это означает,
что в точке d
вектор э. д. с. Е вращается с той же
угловой скоростью, что и вектор напряжения
U,
и, следовательно, угол
между ними больше не возрастает. Угол
в этой точке достигает своего максимального
значения
.
Однако и теперь процесс не останавливается,
так как вследствие неравенства мощностей
турбины и генератора на валу агрегата
существует избыточный момент тормозящего
характера, под влиянием которого частота
вращения продолжает уменьшаться и
относительная скорость
становится отрицательной. Угол
начинает уменьшаться, и рабочая точка,
характеризующая процесс на характеристике
мощности, перемещается в обратном
направлении к точке с. Эту точку ротор
вновь проходит по инерции, и около точки
b
угол
достигает своего нового минимального
значения, после чего вновь начинает
возрастать. После ряда постепенно
затухающих колебаний в точке с
устанавливается новый установившийся
режим с прежним значением передаваемой
мощности
и
новым значением угла
.
Картина колебаний угла
во времени показана на рисунке 11.6.
Постепенное уменьшение амплитуды
обусловливается потерями энергии при
колебаниях частоты вращения генератора.
Такой характер перехода к новому режиму не влечет за собой каких-либо осложнений. Во всяком случае в нарисованной картине нарушение устойчивости не имело места. Можно отметить лишь, что в переходном электромеханическом процессе угол достигал значений ( ), превышающих значение нового установившегося режима.
Возможен
и другой исход процесса (рисунок 11.7).
Торможение ротора, начиная с точки с,
уменьшает относительную скорость
вращения
.
Однако угол в этой фазе процесса все
еще возрастает, и если он успеет
достигнуть критической величины
в точке с на пересечении падающей ветви
синусоиды мощности генератора с
горизонталью мощности турбины
прежде, чем относительная скорость
упадет до нуля, в дальнейшем избыточный
момент на валу машины становится вновь
ускоряющим, скорость
начнет быстро возрастать и генератор
выпадает из синхронизма (рисунок 11.8).
Рисунок 11.5 - Колебания мощности и относительной угловой скорости генератора при отключении цепи. I—характеристика мощности при нормальном режиме; II—характеристика мощности при отключении цепи, |
|
Рисунок 11.6. Колебания угла при отключении одной параллельной цепи электропередачи.
|
|
Рисунок 11.7. Нарушение динамической устойчивости при отключении одной параллельной цепи электропередачи |
|
Рисунок 11.8. Нарастание угла при нарушении устойчивости |
|
Если в процессе качаний будет пройдена точка с', то возврат к установившемуся режиму уже невозможен. Несмотря на теоретическую возможность существования нового установившегося (и статически устойчивого) режима в точке с, процесс качания машины при переходе к этому режиму может привести к выпадению машины из синхронизма. Такой характер нарушения устойчивости может быть назван динамическим.
Основной причиной нарушений динамической устойчивости электрических систем являются обычно короткие замыкания, резко уменьшающие амплитуду характеристики мощности.
Рекомендуемая литература: ОЛ3, ДЛ1