
- •М инистерство образования и науки республики казахстан атырауский институт нефти и газа
- •Кафедра «Электроэнергетика»
- •Содержание
- •Введение
- •Программа обучения по дисциплине (syllabus) для студента
- •2.Цели и задачи изучаемой дисциплины
- •3. Содержание и план изучения учебной дисциплины
- •Контрольные вопросы для подготовки к экзамену
- •5. Рекомендуемая литература
- •5.1 Основная литература (ол)
- •5.2.Дополнительная литература (дл)
- •Методические указания (му)
- •5.4. Технические средства
- •График выполнения и сдачи заданий по дисциплине
- •6.1 Тематический план и сроки сдачи заданий по срсп
- •Задание для срс
- •7. Контроль и оценка результатов обучения
- •Итоговая оценка знаний студентов по дисциплине
- •3. Лекционный комплекс Лекция 1. Введение. Переходные процессы в электроэнергетических системах Основные понятия и определения
- •Термины и определения
- •Контрольные вопросы
- •Лекция 2 Тема: Токи короткого замыкания. Причины возникновения и последствия коротких замыканий. Назначение расчетов коротких замыканий и общие сведения о расчетных условиях
- •Природа возникновения коротких замыканий
- •Виды повреждений в трехфазных сэс
- •Последствия коротких замыканий
- •Возникновения различных видов кз в % в зависимости от напряжения сети
- •Основные причины, вызывающие электромагнитные переходные процессы:
- •Для предотвращения коротких замыканий и уменьшение и последствие необходимо:
- •Назначение расчетов коротких замыканий
- •Контрольные вопросы
- •Лекция 3. Тема: Трехфазное короткое замыкание в электрической цепи
- •Методы расчета тока трехфазного короткого замыкания
- •Ударный ток короткого замыкания
- •Действующее значение тока кз и его составляющих
- •Контрольные вопросы
- •Лекция 4 Тема: Составление расчетной схемы и схемы замещения
- •Применение системы относительных единиц
- •«Преобразование схем замещения»
- •Точное приведение элементов схемы замещения в именованных единицах
- •Приближенное приведение схемы замещения в именованных единицах
- •Контрольные вопросы
- •Лекция 5 Тема: Несимметричные переходные процессы
- •Метод симметричных составляющих
- •Схемы отдельных последовательностей
- •Контрольные вопросы
- •Лекция 6 Тема: Установившийся режим короткого замыкания
- •Контрольные вопросы
- •Лекция 7 Тема: Расчет коротких замыкании в электроустановках переменного тока напряжением до 1кВ
- •Дополнительные факторы, подлежащие учету при расчете токов кз
- •Особенности выбора расчетных условия
- •Расчет начального значения периодической составляющей тока трехфазного короткого замыкания
- •Контрольные вопросы
- •Лекция 8 Тема: Расчет коротких замыкании в электроустановках переменного тока напряжением выше 1кВ
- •Расчет начального действующего значения периодической составляющей тока короткого замыкания от электрических машин
- •Расчет апериодической составляющей тока короткого замыкания в произвольной схеме
- •Существует несколько методов ее определения.
- •Способы определения ударного коэффициента и ударного тока короткого замыкания
- •Учет комплексной нагрузки при расчете токов короткого замыкания
- •Типовой состав комплексной нагрузки
- •Контрольные вопросы
- •Лекция 9 Тема: Учет синхронных и асинхронных электродвигателей при расчете токов короткого замыкания
- •Учет комплексной нагрузки при расчетах коротких замыканий
- •Учет сопротивления электрической дуги
- •Особенности расчета коротких замыканий в электроустановках постоянного тока с аккумуляторными батареями
- •Параметры аккумулятора типа ск-1
- •Расчет токов короткого замыкания в установках до 1000в
- •Контрольные вопросы
- •Лекция 10 Тема: Статическая устойчивость. Основные понятия и определения устойчивости
- •Допущения, принимаемые при анализе устойчивости
- •Задачи расчета устойчивости электрических систем
- •Статическая устойчивость нагрузки
- •Статическая устойчивость простейшей системы
- •Контрольные вопросы
- •Лекция 11 Тема: Динамическая устойчивость. Основные понятия и определения устойчивости
- •Динамическая устойчивость двигателей нагрузки
- •Динамическая устойчивость при к.З. На линии
- •Мероприятия по улучшению устойчивости электрических систем
- •Мероприятия, основанные на улучшении параметров элементов электрической системы
- •А) последовательное; б) параллельное включение;
- •Контрольные вопросы
- •Лекция 12 Тема: Расчет термического и электродинамического воздействия токов короткого замыкания на проводники и электрооборудования
- •Термическое действие токов короткого замыкания
- •Определение интеграла Джоуля и термически эквивалентного тока короткого замыкания
- •Термическое воздействие токов короткого замыкания на проводники
- •Электродинамические действие токов короткого замыкания
- •Контрольные вопросы
- •Лекция 13 Тема: Выбор и проверка электрических аппаратов и проводников
- •Выбор по условиям рабочих продолжительных режимов
- •Проверка на термическую стойкость. Проверка проводников. Проверка электрических аппаратов
- •Предельно допустимые температуры нагрева проводников при кз
- •Проверка электрических аппаратов
- •Проверка на электродинамическую стойкость
- •Расчетные схемы шинных конструкции
- •Основные характеристики материалов шин
- •Проверка гибких проводников линии электропередачи и распределительных устройств на возможность их опасного сближения и схлестывания при коротких замыканиях
- •Контрольные вопросы
- •Лекция 14 Тема: Ограничение токов короткого замыкания. Постановка задачи. Методы и средства ограничения токов короткого замыкания
- •Методы и средства ограничения токов короткого замыкания
- •Классификация методов и средств ограничения токов короткого замыкания
- •Схемные решения
- •А) продольное разделение сетей; б) поперечное разделение сетей;
- •Деления сети
- •А) исходная схема; б) деление ру на две части; в) схема с удлиненными блоками;
- •А) исходная схема; б) деление ру на две части; в) схема с удлиненными блоками;
- •А) исходная схема; б) разрыв автотрансформаторных связей между двумя или тремя ру повышенных напряжений;
- •Общие требования к токоограничивающим устройствам
- •Токоограничивающие реакторы
- •Реакторы с линейной характеристикой
- •Реакторы с нелинейной характеристикой
- •Токоограничивающие коммутационные аппараты
- •Токоограничивающие устройства трансформаторного типа
- •Контрольные вопросы
- •Лекция 15 Тема: Однократная поперечная и продольная несимметрия
- •Однофазное короткое замыкание
- •Двухфазное короткое замыкание
- •Двухфазное короткое замыкание на землю
- •Учет переходного сопротивления в месте замыкания
- •Разрыв одной фазы трехфазной цепи.
- •Контрольные вопросы
- •4. Практические занятия Практическая работа № 1 Тема: Определение мощности нагрузки
- •Практическая работа № 2 Тема: Расчет токов короткого замыкания
- •Практическая работа № 3 Тема: Расчет начального действующего значения периодической составляющей тока короткого замыкания
- •3.1. Расчет составляющей тока трехфазного короткого замыкания за блоком генератор-трансформатор
- •Методика расчета
- •Практическая работа № 4
- •4.1. Расчет составляющей тока трехфазного короткого замыкания синхронного генератора
- •Методика расчета
- •Практическая работа № 5 Тема: Учет изменения параметров в цепи при расчете токов короткого замыкания
- •Практическая работа № 6 Тема: Расчет токов короткого замыкания для ад и сд
- •Практическая работа № 7 Тема: Проверка электрооборудования на термическую стойкость при коротких замыканиях
- •7.1. Проверить на термическую стойкость при кз выключатель типа вмпэ-10-630-20 уз
- •7.2. Проверить на термическую стойкость при кз выключатель типа вмт-110б-20/1000у1
- •Практическая работа № 8 Тема: Проверка электрооборудования на электродинамическую стойкость при коротких замыканиях
- •8.1. Проверить на электродинамическую стойкость при кз изолятора
- •Методика расчета
- •8.2. Проверить на электродинамическую стойкость при кз трехфазную шинную конструкцию - изолятора
- •Методика расчета
- •Практическая работа № 9 Тема: Эквивалентная электрическая схема замещения
- •Схемы замещения трансформаторов, автотрансформаторов и сдвоенных реакторов. Определение их индуктивных сопротивлений
- •Расчетные выражения для определения приведенных значений сопротивлений
- •Формулы для определения реактивных сопротивлений элементов сэс
- •Практическая работа № 10 Тема: Ограничение токов короткого замыкания
- •А) несекционированное; б) секционированное;
- •Общие требования к токоограничивающим устройствам
- •Практическая работа № 11 Тема: Выбор токоограничивающих реакторов
- •Токоограничивающие реакторы
- •Методика расчета
- •Технические данные реактора
- •Практическая работа № 12 Тема: Выбор токоведущих частей и аппаратов Расчетные условия для выбора проводников и аппаратов по продолжительным режимам работы
- •12.1. Выбор сечения шин
- •Параметры отдельных элементов:
- •Методика расчета
- •12.2. Выбор сборных шин 110 кВ
- •Методика расчета
- •Выбор допустимого сечения кабелей, питающих местных потребителей электроэнергии, с учетом установленных типов линейных реакторов
- •Практическая работа № 13 Тема: Выбор кабелей
- •Кабели, рекомендуемые для прокладки в земле и воздухе
- •Методика расчета
- •13.1. Выбор сечение кабеля
- •Методика расчета
- •Решение Расчетный ток нагрузки на ру-10 кВ тп
- •Проверка сечения кабеля асб2л 3х70 по экономической плотности тока
- •Проверка сечения кабеля на термическую устойчивость к действию токов короткого замыкания
- •Проверка по потере напряжения
- •Практическая работа № 14 Тема: Схемы электрических соединений на стороне 6-10 кВ
- •14.1. Схема с одной системой сборных шин
- •А) несекционированных выключателем; б) секционированных выключателем;
- •14.2. Схема с двумя системами сборных шин
- •14.3. Схемы электрических соединений на стороне 35 кВ и выше Упрощенные схемы ру
- •А) без выключателя вн; б) с отделителем вн; в) с выключателем вн;
- •14.4. Кольцевые схемы
- •А) схема треугольника; б) схема четырехугольника; в) схема шестиугольника;
- •Практическая работа № 15 Тема: Схемы электроснабжения собственных нужд подстанции
- •А) с оперативным переменным током; б) с оперативным постоянным током;
- •Методика расчета
- •15.1. Выбрать мощность трансформаторов на узловой подстанции
- •Методика расчета
- •Контрольные задания
- •Темы курсовых проектов по электрически сети и системам
- •Исходные данные к курсовому проекту
- •7. Требования к оформлению расчетных работ
Контрольные вопросы
Что называется статической устойчивостью?
Что называется пропускной способностью?
Что такое позиционная система?
Что представляет собой статические характеристики?
Перечислите основные задачи устойчивости электрических систем?
Какие допущения принимается при анализе устойчивости?
Что понимается под статической устойчивостью электрической системы?
Как осуществляется учет АРВ пропорционального и сильного действия в приближенных расчетах статической устойчивости?
По каким параметрам ведется регулирование тока возбуждения генератора при наличии АРВ пропорционального или сильного действия?
Объясните механизм повышения предела статической устойчивости энергосистемы при использовании АРВ пропорционального и сильного действия?
Назовите средства повышения статической устойчивости энергосистемы и объясните механизм их действия?
Лекция 11 Тема: Динамическая устойчивость. Основные понятия и определения устойчивости
Цель лекции: Изучить теоретическую часть темы
Устойчивость электрической системы, устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В электрической системе источниками электрической энергии обычно являются синхронные генераторы, связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. электрическая система должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями, отключениями линий электропередачи и т.п.
Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой электрической системы могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование электрической системы возможно, если обеспечен определённый запас устойчивости электрических систем, т. е. если параметры режима работы и параметры самой электрической системы достаточно отличаются от критических. Для обеспечения устойчивости энергосистем предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании электрической системы, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д. При анализе устойчивости энергосистем различают статическую, динамическую и результирующую устойчивость. Статическая устойчивость характеризует устойчивость энергосистем при малых возмущениях, т. е. таких возмущениях, при которых исследуемая электрическая система может рассматриваться как линейная.
Динамическая устойчивость определяет поведение электрической системы после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС.
Если статическая устойчивость характеризует установившийся режим системы, то при анализе динамической устойчивости выявляется способность системы сохранять синхронный режим работы при больших его возмущениях. Большие возмущения возникают при различных коротких замыканиях, отключении линий электропередачи, генераторов, трансформаторов и пр. К большим возмущениям относятся также изменения мощности крупной нагрузки, потеря возбуждения какого-либо генератора, включение крупных двигателей.
Одним из следствий возникшего возмущения является отклонение скоростей вращения роторов генераторов от синхронной (качания роторов генераторов системы). Если после какого-либо возмущения взаимные углы роторов примут определенные значения (их колебания затухнут около каких-либо новых значений), то считается, что динамическая устойчивость сохраняется. Если хотя бы у одного генератора ротор начинает проворачиваться относительно поля статора, то это признак нарушения динамической устойчивости. В общем случае о динамической устойчивости системы можно судить по зависимостям S —f(t) полученным в результате совместного решения уравнений движения роторов генераторов. Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется графическим методом или методом площадей.
Всякое внезапное нарушение рабочего режима электрической системы, состоящей из электростанций, линий электропередачи и нагрузок, вызывает качания синхронных машин (генераторов, синхронных двигателей и компенсаторов). При неблагоприятных условиях размах колебаний может получиться настолько большим, что отдельные машины или целые электростанции выпадут из синхронизма.
Причина возникновения качаний заключается в следующем. Как правило, аварии в системах передачи сопровождаются внезапным изменением мощности, отдаваемой в сеть электростанциями. Регуляторы первичных двигателей обладают значительной инерцией и могут реагировать на изменение мощности или, вернее, на изменение частоты вращения машины с определенным запаздыванием. В результате равновесие между отдаваемой генераторами мощностью и мощностью, развиваемой первичными двигателями, нарушается и на валу машин возникают избыточные моменты, вызывающие изменение скорости и относительное перемещение роторов. Дальнейший характер возникших колебаний зависит от целого ряда факторов. Значения отдаваемой машинами мощности и избыточных моментов, ускоряющих или замедляющих роторы машин, в каждый момент времени определяются абсолютным значением и фазой э. д. с. всех машин системы, которые с течением времени изменяются, причем изменение фаз связано с относительным перемещением роторов и зависит, таким образом, от инерции вращающихся масс, т. е. от механических свойств системы, тогда как изменение абсолютных значений э. д. с. определяется преимущественно переходными электромагнитными процессами в машинах и зависит от действий АРВ и ряда других факторов.
Качания синхронных машин могут возникнуть также в следующих случаях: при внезапном скачке нагрузки, при отключении линии или трансформатора, при отключении генератора и при коротком замыкании (к.з.). Из этих видов аварии наиболее опасным является к.з., с которым и необходимо считаться в первую очередь. При заземленной нейтрали могут быть следующие виды к.з.: однофазное замыкание на землю; непосредственное замыкание между двумя фазами; двухфазное замыкание на землю; трехфазное к. з.
Наибольшие затруднения в отношении устойчивости возникают при трехфазном к.з. Вследствие резкого снижения напряжения при трехфазном к.з. связь между генераторными станциями настолько ослабляется, что устойчивость системы часто нарушается. При однофазном и двухфазном к.з. (особенно в первом случае) снижение напряжения получается меньше и генераторы находятся в более благоприятных условиях, чем в случае трехфазного к.з. Поскольку вероятность однофазного к.з. достаточно велика, опасности выпадения машин из синхронизма в этих условиях необходимо избегать. В ответственных системах следует добиваться сохранения устойчивости также и при трехфазном к.з. Другие виды аварий, такие, как отключение линий, трансформаторов и генераторов, с точки зрения динамической устойчивости обычно менее опасны, чем к.з. Поэтому расчеты динамической устойчивости проводятся [применительно к нарушению установившегося режима, причиной которого являются к.з.