
- •М инистерство образования и науки республики казахстан атырауский институт нефти и газа
- •Кафедра «Электроэнергетика»
- •Содержание
- •Введение
- •Программа обучения по дисциплине (syllabus) для студента
- •2.Цели и задачи изучаемой дисциплины
- •3. Содержание и план изучения учебной дисциплины
- •Контрольные вопросы для подготовки к экзамену
- •5. Рекомендуемая литература
- •5.1 Основная литература (ол)
- •5.2.Дополнительная литература (дл)
- •Методические указания (му)
- •5.4. Технические средства
- •График выполнения и сдачи заданий по дисциплине
- •6.1 Тематический план и сроки сдачи заданий по срсп
- •Задание для срс
- •7. Контроль и оценка результатов обучения
- •Итоговая оценка знаний студентов по дисциплине
- •3. Лекционный комплекс Лекция 1. Введение. Переходные процессы в электроэнергетических системах Основные понятия и определения
- •Термины и определения
- •Контрольные вопросы
- •Лекция 2 Тема: Токи короткого замыкания. Причины возникновения и последствия коротких замыканий. Назначение расчетов коротких замыканий и общие сведения о расчетных условиях
- •Природа возникновения коротких замыканий
- •Виды повреждений в трехфазных сэс
- •Последствия коротких замыканий
- •Возникновения различных видов кз в % в зависимости от напряжения сети
- •Основные причины, вызывающие электромагнитные переходные процессы:
- •Для предотвращения коротких замыканий и уменьшение и последствие необходимо:
- •Назначение расчетов коротких замыканий
- •Контрольные вопросы
- •Лекция 3. Тема: Трехфазное короткое замыкание в электрической цепи
- •Методы расчета тока трехфазного короткого замыкания
- •Ударный ток короткого замыкания
- •Действующее значение тока кз и его составляющих
- •Контрольные вопросы
- •Лекция 4 Тема: Составление расчетной схемы и схемы замещения
- •Применение системы относительных единиц
- •«Преобразование схем замещения»
- •Точное приведение элементов схемы замещения в именованных единицах
- •Приближенное приведение схемы замещения в именованных единицах
- •Контрольные вопросы
- •Лекция 5 Тема: Несимметричные переходные процессы
- •Метод симметричных составляющих
- •Схемы отдельных последовательностей
- •Контрольные вопросы
- •Лекция 6 Тема: Установившийся режим короткого замыкания
- •Контрольные вопросы
- •Лекция 7 Тема: Расчет коротких замыкании в электроустановках переменного тока напряжением до 1кВ
- •Дополнительные факторы, подлежащие учету при расчете токов кз
- •Особенности выбора расчетных условия
- •Расчет начального значения периодической составляющей тока трехфазного короткого замыкания
- •Контрольные вопросы
- •Лекция 8 Тема: Расчет коротких замыкании в электроустановках переменного тока напряжением выше 1кВ
- •Расчет начального действующего значения периодической составляющей тока короткого замыкания от электрических машин
- •Расчет апериодической составляющей тока короткого замыкания в произвольной схеме
- •Существует несколько методов ее определения.
- •Способы определения ударного коэффициента и ударного тока короткого замыкания
- •Учет комплексной нагрузки при расчете токов короткого замыкания
- •Типовой состав комплексной нагрузки
- •Контрольные вопросы
- •Лекция 9 Тема: Учет синхронных и асинхронных электродвигателей при расчете токов короткого замыкания
- •Учет комплексной нагрузки при расчетах коротких замыканий
- •Учет сопротивления электрической дуги
- •Особенности расчета коротких замыканий в электроустановках постоянного тока с аккумуляторными батареями
- •Параметры аккумулятора типа ск-1
- •Расчет токов короткого замыкания в установках до 1000в
- •Контрольные вопросы
- •Лекция 10 Тема: Статическая устойчивость. Основные понятия и определения устойчивости
- •Допущения, принимаемые при анализе устойчивости
- •Задачи расчета устойчивости электрических систем
- •Статическая устойчивость нагрузки
- •Статическая устойчивость простейшей системы
- •Контрольные вопросы
- •Лекция 11 Тема: Динамическая устойчивость. Основные понятия и определения устойчивости
- •Динамическая устойчивость двигателей нагрузки
- •Динамическая устойчивость при к.З. На линии
- •Мероприятия по улучшению устойчивости электрических систем
- •Мероприятия, основанные на улучшении параметров элементов электрической системы
- •А) последовательное; б) параллельное включение;
- •Контрольные вопросы
- •Лекция 12 Тема: Расчет термического и электродинамического воздействия токов короткого замыкания на проводники и электрооборудования
- •Термическое действие токов короткого замыкания
- •Определение интеграла Джоуля и термически эквивалентного тока короткого замыкания
- •Термическое воздействие токов короткого замыкания на проводники
- •Электродинамические действие токов короткого замыкания
- •Контрольные вопросы
- •Лекция 13 Тема: Выбор и проверка электрических аппаратов и проводников
- •Выбор по условиям рабочих продолжительных режимов
- •Проверка на термическую стойкость. Проверка проводников. Проверка электрических аппаратов
- •Предельно допустимые температуры нагрева проводников при кз
- •Проверка электрических аппаратов
- •Проверка на электродинамическую стойкость
- •Расчетные схемы шинных конструкции
- •Основные характеристики материалов шин
- •Проверка гибких проводников линии электропередачи и распределительных устройств на возможность их опасного сближения и схлестывания при коротких замыканиях
- •Контрольные вопросы
- •Лекция 14 Тема: Ограничение токов короткого замыкания. Постановка задачи. Методы и средства ограничения токов короткого замыкания
- •Методы и средства ограничения токов короткого замыкания
- •Классификация методов и средств ограничения токов короткого замыкания
- •Схемные решения
- •А) продольное разделение сетей; б) поперечное разделение сетей;
- •Деления сети
- •А) исходная схема; б) деление ру на две части; в) схема с удлиненными блоками;
- •А) исходная схема; б) деление ру на две части; в) схема с удлиненными блоками;
- •А) исходная схема; б) разрыв автотрансформаторных связей между двумя или тремя ру повышенных напряжений;
- •Общие требования к токоограничивающим устройствам
- •Токоограничивающие реакторы
- •Реакторы с линейной характеристикой
- •Реакторы с нелинейной характеристикой
- •Токоограничивающие коммутационные аппараты
- •Токоограничивающие устройства трансформаторного типа
- •Контрольные вопросы
- •Лекция 15 Тема: Однократная поперечная и продольная несимметрия
- •Однофазное короткое замыкание
- •Двухфазное короткое замыкание
- •Двухфазное короткое замыкание на землю
- •Учет переходного сопротивления в месте замыкания
- •Разрыв одной фазы трехфазной цепи.
- •Контрольные вопросы
- •4. Практические занятия Практическая работа № 1 Тема: Определение мощности нагрузки
- •Практическая работа № 2 Тема: Расчет токов короткого замыкания
- •Практическая работа № 3 Тема: Расчет начального действующего значения периодической составляющей тока короткого замыкания
- •3.1. Расчет составляющей тока трехфазного короткого замыкания за блоком генератор-трансформатор
- •Методика расчета
- •Практическая работа № 4
- •4.1. Расчет составляющей тока трехфазного короткого замыкания синхронного генератора
- •Методика расчета
- •Практическая работа № 5 Тема: Учет изменения параметров в цепи при расчете токов короткого замыкания
- •Практическая работа № 6 Тема: Расчет токов короткого замыкания для ад и сд
- •Практическая работа № 7 Тема: Проверка электрооборудования на термическую стойкость при коротких замыканиях
- •7.1. Проверить на термическую стойкость при кз выключатель типа вмпэ-10-630-20 уз
- •7.2. Проверить на термическую стойкость при кз выключатель типа вмт-110б-20/1000у1
- •Практическая работа № 8 Тема: Проверка электрооборудования на электродинамическую стойкость при коротких замыканиях
- •8.1. Проверить на электродинамическую стойкость при кз изолятора
- •Методика расчета
- •8.2. Проверить на электродинамическую стойкость при кз трехфазную шинную конструкцию - изолятора
- •Методика расчета
- •Практическая работа № 9 Тема: Эквивалентная электрическая схема замещения
- •Схемы замещения трансформаторов, автотрансформаторов и сдвоенных реакторов. Определение их индуктивных сопротивлений
- •Расчетные выражения для определения приведенных значений сопротивлений
- •Формулы для определения реактивных сопротивлений элементов сэс
- •Практическая работа № 10 Тема: Ограничение токов короткого замыкания
- •А) несекционированное; б) секционированное;
- •Общие требования к токоограничивающим устройствам
- •Практическая работа № 11 Тема: Выбор токоограничивающих реакторов
- •Токоограничивающие реакторы
- •Методика расчета
- •Технические данные реактора
- •Практическая работа № 12 Тема: Выбор токоведущих частей и аппаратов Расчетные условия для выбора проводников и аппаратов по продолжительным режимам работы
- •12.1. Выбор сечения шин
- •Параметры отдельных элементов:
- •Методика расчета
- •12.2. Выбор сборных шин 110 кВ
- •Методика расчета
- •Выбор допустимого сечения кабелей, питающих местных потребителей электроэнергии, с учетом установленных типов линейных реакторов
- •Практическая работа № 13 Тема: Выбор кабелей
- •Кабели, рекомендуемые для прокладки в земле и воздухе
- •Методика расчета
- •13.1. Выбор сечение кабеля
- •Методика расчета
- •Решение Расчетный ток нагрузки на ру-10 кВ тп
- •Проверка сечения кабеля асб2л 3х70 по экономической плотности тока
- •Проверка сечения кабеля на термическую устойчивость к действию токов короткого замыкания
- •Проверка по потере напряжения
- •Практическая работа № 14 Тема: Схемы электрических соединений на стороне 6-10 кВ
- •14.1. Схема с одной системой сборных шин
- •А) несекционированных выключателем; б) секционированных выключателем;
- •14.2. Схема с двумя системами сборных шин
- •14.3. Схемы электрических соединений на стороне 35 кВ и выше Упрощенные схемы ру
- •А) без выключателя вн; б) с отделителем вн; в) с выключателем вн;
- •14.4. Кольцевые схемы
- •А) схема треугольника; б) схема четырехугольника; в) схема шестиугольника;
- •Практическая работа № 15 Тема: Схемы электроснабжения собственных нужд подстанции
- •А) с оперативным переменным током; б) с оперативным постоянным током;
- •Методика расчета
- •15.1. Выбрать мощность трансформаторов на узловой подстанции
- •Методика расчета
- •Контрольные задания
- •Темы курсовых проектов по электрически сети и системам
- •Исходные данные к курсовому проекту
- •7. Требования к оформлению расчетных работ
Лекция 5 Тема: Несимметричные переходные процессы
Цель лекции: Изучить теоретическую часть темы
Несимметричные переходные процессы в электрических системах. Несимметричные режимы возникают вследствие несимметричных коротких замыканий или обрыва одной-двух фаз линии. В первом случае в электрической сети появляется поперечная несимметрия, во втором - продольная. Строгий математический анализ переходных процессов при несимметрии затруднен тем, что в электрических машинах возникает пульсирующее магнитное поле ротора, которое образует полный спектр высших гармонических составляющих тока. Замена координатных осей А, В, С на систему d, q, 0 не освобождает дифференциальные уравнения от периодических коэффициентов. Поэтому в большинстве практических расчетов учитывается лишь основная гармоника токов или Напряжений. Только при таком ограничении возможно использование метода симметричных составляющих, который наиболее часто применяется для анализа несимметричных КЗ.
Метод симметричных составляющих
Метод симметричных составляющих базируется на математической теории многофазных электрических систем при неодинаковых условиях работы фаз. Сформулируем основные положения метода симметричных составляющих.
Любую несимметричную систему токов можно разложить на три симметричные, называемые системами прямой, обратной нулевой последовательностей. Эти системы получили название «симметричные составляющие». Предполагается, что они одновременно циркулируют в рассматриваемой сети в несимметричном режиме.
Симметричная система токов прямой последовательности (рисунок 5.1, а) представляет собой три одинаковых по величине вектора, расположенных под углом 120°, вращающихся против часовой стрелки так, что соблюдается нормальное чередование фаз: А - В - С. Соотношения между фазными значениями устанавливаются с помощью оператора
Этот вектор единичной длины имеет аргумент, равный 120°. Если некоторый вектор, например IА1, умножить на а, то это означает повернуть IА1 на 120° против часовой стрелки. С помощью вектора а можно выразить токи фаз В и С через ток фазы А: ІB1 = а2ІA1 ІC1 = аІA1
Симметричная система токов обратной последовательности (рисунок 5.1, б) представляет собой три одинаковых по величине вектора, расположенных под углом 120° и вращающихся против часовой стрелки так, что соблюдается обратное чередование фаз: А - С - В. При этом токи фаз В и С связаны с током фазы А следующим образом: ІB2 = аІA2 ІC2 = а2ІA2
Рисунок 5.1. Система токов прямой (а), обратной (б) и нулевой (в) последовательностей
Симметричная система токов нулевой последовательности (рисунок 5.1, в) существенно отличается от прямой и обратной. Она представляет собой систему трех переменных токов, совпадающих по фазе и имеющих одинаковую амплитуду. Эти токи являются, по существу, разветвлением однофазного тока, для которого три провода трехфазной цепи составляют один прямой провод, а обратным служит земля или четвертый (нулевой) провод. Появление токов нулевой последовательности в сети означает возникновение в ней несимметричного замыкания на землю. Рассматриваемая несимметричная система токов допускает только одно разложение на симметричные составляющие. Действительно, представив ток каждой фазы через его симметричные составляющие, получим
IA = ІA1 + IA2 + IA0,
IB = a2ІA1 + aIA2 + IA0,
IC = aІA1 + a2IA2 + IA0,
Если IA ,IB , IC заданы, то искомыми являются три величины IA1 ,IB2 , IC0. Они определяются тремя линейными уравнениями, которые допускают только одно решение:
Все соотношения для симметричных составляющих токов справедливы и для напряжений. Рассмотрим разложение на составляющие несимметричной системы токов (рис 4.3, а). С помощью геометрических построений, соответствующих выражениям и найдем ток нулевой, прямой и обратной последовательностей (рисунок 5.2, б-г). Если сложить симметричные составляющие в соответствии с выражениями, то получим исходную систему.
Рис 5.2. Разложение несимметричной системы токов на симметричные сотавляющие
В трехфазной цепи в месте КЗ наряду с напряжениями прямой последовательности возникают напряжения обратной и нулевой последовательностей. В ветвях схемы вместе с токами прямой последовательности начинают циркулировать токи обратной и нулевой последовательностей.
Для иллюстрации этого положения рассмотрим схему электрической системы, показанную на рисунок 5.4. За положительное направление токов примем направление слева направо и допустим, что картина распределения имеет вид, показанный на рисунке. Тогда
для
участка 1
для
участка 2
для
участка 3
Из этих соотношении видно, что ток нулевой последовательности, определяемый по выражению, циркулирует только на участке 2.
Для
участков 1
и
2 можно записать следующие соотношения:
или
где
I3
-
ток в земле. Отсюда,
В симметричных электрических системах токи и напряжения схем отдельных последовательностей могут рассматриваться независимо друг от друга и быть связаны между собой законами Ома и Кирхгофа.
Если какой-либо элемент цепи симметричен и при протекании по нему токов I1, I2, I0, обладает некоторыми сопротивлениями Z1, Z2, Z0, симметричные составляющие падении напряжения в этом элементе будут равны ∆Z1 = I1 Z1, ∆Z2 = I2 Z2, ∆Z0 = I0 Z0,
Комплексная форма уравнений справедлива ни только для Стационарного режима, но и для переходного, так как токи и напряжения при переходном процессе можно представить проекциями вращающихся векторов на соответствующую ось. При этом Дифференциальным уравнениям, связывающим комплексные значения, отвечают операторные уравнения, которые при нулевых начальных условиях по своей структуре аналогичны уравнениям стационарного режима, записанным в комплексной форме. Уравнения второго закона Кирхгофа для любого КЗ каждой последовательности могут быть записаны в виде UK1 = EΣ - Z1Σ IK1 , UK2 = 0 – Z2Σ IK2 , UK0 = 0 – Z0Σ IK0: где UK1 , UK2 , UK0 , IK1 , IK2 , IK0- симметричные составляющие Напряжения и тока в месте КЗ; EΣ - результирующая ЭДС относительно точки КЗ; Z1Σ , Z2Σ , Z0Σ - результирующие сопротивления схем соответствующих последовательностей относительно точки КЗ.
Запись уравнений второго закона Кирхгофа вызывает необходимость сформулировать следующее положение метода симметричных составляющих.
Элементы трехфазной сети для токов прямой, обратной и нулевой последовательностей имеют неодинаковые сопротивления. ЭДС генераторов симметричны, т.е. не содержат обратной и нулевой составляющих. Отсюда следует, что: а) в электрических системах существуют только ЭДС прямой последовательности; б) токи обратной и нулевой последовательностей определяются только напряжениями в точке КЗ.
Между системами трех симметричных составляющих всегда существует связь, задаваемая условиями короткого замыкания. Эта связь легко устанавливается путем перевода граничных условий короткого замыкания, заданных через действительные токи и напряжения, в условия, заданные через симметричные составляющие.
Параметры элементов электрической системы обратной и нулевой последовательностей
Каждый элемент электрической системы характеризуется параметрами прямой, обратной и нулевой последовательностей. Все сопротивления элементов системы, которыми они представлялись в расчетах симметричного КЗ, являются сопротивлениями прямой последовательности. Для элементов, у которых отсутствует магнитная связь между фазами (например, реактора), сопротивления различных последовательностей равны между собой и не зависят от чередования фаз. Для элемента, магнитосвязанные цепи которого неподвижны относительно друг друга (например, трансформатора, линии), сопротивления прямой и обратной последовательностей равны, так как взаимоиндукция между фазами такого элемента не изменяется при изменении порядка чередования фаз.
С
истема
токов обратной последовательности
отличается от системы прямой
последовательности обратным порядком
чередования фаз. Обобщенный вектор
тока обратной последовательности
(рисунок
5.3)
вращается в обратную сторону по отношению
к вектору прямой последовательности
со скоростью.
Рис 5.3. Обобщенные векторы токов прямой и обратной последовательностей
Токи обратной последовательности, протекая по обмоткам статора, создают магнитное поле, вращающееся в сторону, противоположную направлению вращения магнитного поля реакции статора. Магнитное поле, создаваемое токами обратной последовательности, перемещается относительно ротора с двойной синхронной частотой, вызывая пульсирующее магнитное поле двойной частоты. Более подробно физическая картина процессов, протекающих в синхронной машине, описана в работе.
Индуктивное
сопротивление обратной последовательности
может быть определено как отношение
приложенного напряжения обратной
последовательности к основной гармонике
тока обратной последовательности (х2
=
U2
/
І2
).
Сопротивление неявнополюсной
синхронной машины обратной
последовательности в практических
расчетах принимается равным ее
сверхпереходному сопротивлению
(х2
- x"d).
Для явнополюсной машины без демпферной
обмотки сопротивление обратной
последовательности определяется
формулой
С учетом демпферных обмоток это
выражение выглядит так:
Токи нулевой последовательности создают
только магнитные истоки рассеяния
статорной обмотки, меньшие, чем при
токах Прямой и обратной последовательностей.
Величина индуктивного сопротивления
нулевой последовательности х0
колеблется в широких пред ел ах (от
0.15 x"d
до
0.6 x"d
).
Формулы для определения сопротивлений прямой, обратной и нулевой последовательности элементов системы электроснабжения приведены в таблица 5.1.
Таблица 5.1.
Наименован. элемента |
Трехфазное КЗ |
Прямая последов. |
Обратная последоват. |
Нулевая последоват. |
|
ИЕ |
ОЕ |
||||
Синхронный генератор |
|
|
|
без
ДО
с
ДО
|
|
Воздушная ЛЭП |
|
|
|
|
одноцепная с тросами Х0 = 3,0 Х1, одноцепная без тросов Х0 = 3,5 Х1, двухцепная с тросами Х0=4,7Х1 двухцепная без тросов Х0 = 5,5 Х1 |
Кабельная ЛЭП |
|
|
|
|
Х0 =(3,5...4,7) Х1, R0 = 10 r L |
Токоогранич. реактор |
|
|
|
|
Х0 = Х1 |
Асинхронный двигатель |
|
|
|
|
Х0 =( 0,15...0,7) Х1 |
Двухобмот. трансформ. |
|
|
|
|
Определяется соединением обмоток |
Синхронный двигатель, компенс. |
|
|
|
|
Х0 =(0,15...0,7)Х1. |