
- •Часть 2
- •Фундаментальные физические константы
- •Тригонометрические тождества
- •В прямоугольном треугольнике
- •Решение квадратных уравнений
- •Действия со степенями
- •Приставки для образования кратных и дольных единиц
- •Значения синусов и тангенсов для углов 0-90°
- •Раздел III. Основы электродинамики Физические величины в электродинамике и их единицы измерения в си
- •Тема 1. Электрическое поле (электростатика)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тема 2. Законы постоянного тока. Краткая теория
- •Примеры решения задач
- •61. Определить плотность тока, если за 0,4 с через проводник, площадь поперечного сечения которого равна 1,2 мм2, прошло 6·1018 электронов.
- •62. Какова напряжённость поля в алюминиевом проводнике сечением 1,4 мм2 при силе тока 1а?
- •64. Сопротивление вольфрамовой нити электрической лампы при 20°с равно 20 Ом. Сопротивление той же нити в рабочем состоянии 188 Ом. Какова температура накала нити?
- •65. Как изменятся показания амперметра и вольтметра (см. Рисунок), если замкнуть ключ?
- •67. Куда нужно передвинуть скользящий контакт реостата (см. Рисунок), чтобы напряжение на участке ab увеличилось?
- •Задачи для самостоятельного решения
- •Тема 3. Магнитное поле Краткая теория
- •Примеры решения задач
- •137. В однородное магнитное поле индукцией мТл перпендикулярно линиям индукции влетает электрон с кинетической энергией кэВ. Каков радиус кривизны траектории движения электрона в поле?
- •Задачи для самостоятельного решения
- •Тема 4. Электромагнитная индукция Краткая теория
- •Алгоритм решения задач на правило Ленца
- •Примеры решения задач
- •156. Магнит, находящийся над замкнутым проводником, двигают вверх (см. Рисунок). В каком направлении возникает ток в проводнике на участке аб (направо или налево)? Ответ обоснуйте.
- •163. Определить индуктивность катушки, в которой при равномерном увеличении силы тока на 2а энергия магнитного поля увеличивается на 10 мДж. Средняя сила тока в цепи равна 5 а.
- •Задачи для самостоятельного решения
- •Раздел IV. Колебания и волны
- •Тема 1. Механические и электромагнитные колебания Краткая теория
- •1. Основные характеристики гармонических колебаний
- •Примеры решения задач
- •200. При каких фазах смещение по модулю равно половине амплитуды?
- •203. Пружина под действием прикреплённого к ней груза массой 5кг совершает 45 колебаний в минуту. Найти коэффициент жёсткости пружины.
- •204. За одно и то же время один математический маятник делает 50 колебаний, а второй 30. Найти их длины, если один из них на 32 см короче другого.
- •205. Груз массой 400 г совершает колебания на пружине с жёсткостью 250 н/м. Амплитуда колебаний 15 см. Найти полную механическую энергию колебаний и наибольшую скорость движения груза.
- •206. Определить период и частоту собственных колебаний в контуре, ёмкость которого составляет 2,2 мкФ и индуктивность равна 0,65 мГн.
- •207. Катушку какой индуктивности надо включить в колебательный контур, чтобы при ёмкости конденсатора 50 пФ получить частоту свободных колебаний 10 мГц?
- •Задачи для самостоятельного решения
- •Тема 2. Механические и электромагнитные волны Краткая теория
- •Примеры решения задач
- •236. Человек воспринимает звуки с частотой от 16 до 20·103 Гц. Определить интервал длин волн, воспринимаемых человеком. Скорость звука в воздухе равна 340 м/с.
- •237. Определить длину звуковой волны в воде, если её длина в воздухе равна 0,797 м. Скорость звука в воздухе принять равной 343 м/с, в воде – равной 1483 м/с.
- •Задачи для самостоятельного решения
- •Тема 3. Волновая оптика Краткая теория
- •Примеры решения задач
- •266. Какова угловая высота Солнца над горизонтом, если для освещения дна колодца солнечными лучами использовали плоское зеркало, наклонив его под углом 25º к вертикали?
- •267. Скорость распространения света в некоторой жидкости равна 240·103 км/с. На поверхность этой жидкости под углом 25° из воздуха падает световой луч. Определить угол преломления луча.
- •268. Луч света падает на поверхность раздела двух прозрачных сред под углом 35° и преломляется под углом 25°. Чему будет равен угол преломления, если луч будет падать под углом 50°?
- •269. Определить угол падения луча в воздухе на поверхность воды, если угол между преломленным и отражённым лучами равен 90°.
- •270. Предельный угол падения при переходе луча из скипидара в воздух равен 41°51’. Чему равна скорость распространения света в скипидаре?
- •271. Луч света переходит из метилового спирта в воздух. Выйдет ли этот луч в воздух, если он падает на поверхность под углом 45°?
- •273. Определить толщину плоскопараллельной пластинки с показателем преломления 1,7, если луч света, пройдя через эту пластинку, смещается на 2 см. Угол падения луча на пластинку равен 50°.
- •Задачи для самостоятельного решения
- •Раздел 5. Квантовая физика Тема 1. Квантовая оптика Краткая теория
- •Примеры решения задач
- •313. Какой должна быть длина волны излучения, падающего на стронций, чтобы при фотоэффекте максимальная кинетическая энергия электронов равнялась Дж? Красная граница фотоэффекта стронция – 550 нм.
- •314. Какое запирающее напряжение надо подать на зажимы a и b, чтобы электроны, вырванные ультрафиолетовыми лучами с длиной волны мкм из вольфрамовой пластинки p, не могли создать ток в цепи?
- •Задачи для самостоятельного решения
- •315. По приведённым длинам волн найти частоту , энергию e, массу m и импульс p фотонов.
- •Тема 2. Физика атома и атомного ядра Краткая теория
- •Примеры решения задач
- •345. Вычислить энергию связи ядра дейтерия (в МэВ).
- •346. Какая энергия выделяется при ядерной реакции
- •Задачи для самостоятельного решения
- •Плотность некоторых веществ
- •Удельная теплоемкость некоторых веществ
- •Температура плавления и удельная теплота плавления твердых тел (при нормальном давлении)
- •Удельная теплота сгорания некоторых видов топлива
- •Максимальная магнитная проницаемость μmax ферромагнитных материалов
- •Литература
- •Раздел III. Основы электродинамики
- •Тема 1. Электрическое поле
- •Тема 2. Законы постоянного тока.
- •Тема 3. Магнитное поле
- •Тема 4. Электромагнитная индукция
- •Раздел IV. Колебания и волны
- •Тема 1. Механические и электромагнитные колебания
- •Тема 2. Механические и электромагнитные волны
- •Тема 3. Волновая оптика
- •Раздел 5. Квантовая физика
- •Тема 1. Квантовая оптика
- •Тема 2. Физика атома и атомного ядра
314. Какое запирающее напряжение надо подать на зажимы a и b, чтобы электроны, вырванные ультрафиолетовыми лучами с длиной волны мкм из вольфрамовой пластинки p, не могли создать ток в цепи?
Дано:
Вольфрам: A = 4,5 эВ |
Решение: 1.
(чтобы
погасить скорость вырванных светом
электронов, электрическое поле
совершает работу
2. Уравнение принимает вид:
3. Решаем уравнение, находим .
По таблице определим работу выхода:
|
|
|
|
Задачи для самостоятельного решения
315. По приведённым длинам волн найти частоту , энергию e, массу m и импульс p фотонов.
316.
Найти массу фотонов видимого излучения
красного цвета (
м)
и рентгеновского излучения (
м).
(3,2·10-36
кг; 8,8·10-34
кг)
317. Найти импульс фотона, если соответствующая ему длина волны равна 1,6·10-8 м. (4,1·10-26 Н·с)
318. Каков импульс фотона с энергией 1 эВ? Какова длина волны такого излучения? (5,3·10-28 Н·с; 1,2 мкм)
319. С какой скоростью должен двигаться электрон, чтобы его импульс был равен импульсу фотона с длиной волны 5,2·10-7 м? (13 км/с)
320. Какую энергию должен иметь фотон, чтобы его масса была равна массе покоя электрона? (0,51 МэВ)
321. Определить длину волны лучей, кванты которых имеют такую же энергию, что и электрон, пролетевший разность потенциалов 4,1 В. (0,3 мкм)
322. Найти длину волны и частоту излучения, масса фотонов которого равна массе покоя электрона. Какого типа это излучение? (2,4·10-12 м; 1,2·1020 Гц)
323. Длинноволновая (красная) граница фотоэффекта для серебра равна 0,29 мкм. Определить работу выхода. (4,3 эВ)
324. Определить красную границу фотоэффекта для калия. (0,56 мкм)
325. Найти работу выхода электрона из металла, если фотоэффект начинается при частоте падающего света 6·1014 Гц. (4·10-19 Дж)
326. Найти наибольшую длину световой волны, при которой начинается фотоэффект для цезия и для платины. Работы выхода электрона соответственно равны 1,9 эВ и 6,3 эВ. (650 нм; 200 нм)
327. Длина волны, соответствующая красной границе фотоэффекта для натрия, составляет 530 нм. Определить работу выхода электронов из натрия. (2,34 эВ)
328. Работа выхода электронов из серебра составляет 7,85·10-19 Дж. Определить длину волны красной границы фотоэффекта для серебра. (260 нм)
329. Работа выхода электронов из золота равна 4,59 эВ. Найти красную границу фотоэффекта для золота. (265 нм)
330. Работа выхода электронов из кадмия равна 4,08 эВ. Какой должна быть длина волны излучения, падающего на кадмий, чтобы при фотоэффекте максимальная скорость вылетающих электронов составляла 7,2·105 м/с. (223 нм)
331. Найти скорость фотоэлектронов, вырываемых с поверхности серебра ультрафиолетовым излучением с длиной волны 155 нм. (1,6·106 м/с)
332. Электрон выходит из цезия с кинетической энергией 2 эВ. Какова длина волны света, вызывающего фотоэффект, если работа выхода равна 1,8 эВ? (330 нм)
333. Определить максимальную кинетическую энергию электронов, вылетающих из калия, если на его поверхность падает излучение с длиной волны 345 нм. Работа выхода электронов из калия равна 2,26 эВ. (2,13·10-19 Дж)
334. Максимальная кинетическая энергия электронов, вылетающих из рубидия при его освещении ультрафиолетовым излучении с длиной волны 317 нм, равна 2,84·10-19 Дж. Определить работу выхода электронов из рубидия и красную границу фотоэффекта. (2,13 эВ; 582 нм)
335. На поверхность вольфрама падает излучение с длиной волны 220 нм. Определить максимальную скорость вылетающих из него электронов, если потенциал работы выхода электрона для вольфрама равен 4,56 В. (6,2·105 м/с)
336. Возникнет ли фотоэффект в цинке под действием излучения, имеющего длину волны 0,45 мкм? (не возникнет)
337. Какую максимальную кинетическую энергию имеют вырванные из лития электроны при облучении светом с частотой 1015 Гц? (1,74 эВ)
338. Какова максимальная скорость электронов, вырванных с поверхности платины при облучении её светом с длиной волны 100 нм? (1,6 Мм/с)
339. С какой длиной волны следует направить свет на поверхность цезия, чтобы максимальная скорость фотоэлектронов была 2000 км/с? Красная граница фотоэффекта для цезия равна 690 нм. (94 нм)