- •Предисловие
- •Список основных используемых сокращений
- •Термины и определения
- •Введение
- •В1. Роль российских ученых в развитии систем электроснабжения
- •В2. Проблемы развития систем электроснабжения
- •В3. Перспективы развития систем электроснабжения
- •1. Общие вопросы электромонтажных и пусконаладочных работ, эксплуатации и ремонта электрооборудования
- •1.1. Система нормативных документов
- •1.1.1. Классификация электроустановок, помещений и электрооборудования
- •1.1.2. Проектная документация
- •1.1.3. Условные графические обозначения
- •1.1.4. Маркировка цепей в электрических схемах
- •1.2. Требования действующих директивных документов к выполнению электромонтажных и пусконаладочных работ
- •1.2.1. Управление электромонтажным производством
- •1.2.2. Подготовка и производство электромонтажных работ
- •1.2.3. Основные принципы выполнения электромонтажных работ в две стадии
- •1.2.4. Четыре этапа пусконаладочных работ
- •1.2.5. Научная организация труда на рабочем месте
- •1.3. Требования действующих директивных документов к эксплуатации электроустановок
- •1.3.1. Электротехнический персонал
- •1.3.2. Ответственный за электрохозяйство
- •1.3.3. Порядок производства переключений в дэу
- •1.3.4. Техническое обслуживание, диагностика, ремонт, модернизация и реконструкция оборудования электроустановок
- •1.3.5. Порядок и условия производства работ в дэу
- •2. Контактные соединения проводов, жил кабелей и шин
- •2.1. Общие сведения о контактных соединениях
- •2.2. Классификация и общие технические требования к контактным электрическим соединениям
- •2.3. Способы выполнения контактных соединений и области их применения
- •2.3.1. Подготовка контактных элементов к соединению
- •2.3.2. Соединение и оконцевание проводов опрессовкой
- •2.3.3. Соединение и оконцевание проводов сваркой
- •2.3.4. Соединение и оконцевание проводов пайкой
- •2.3.5. Соединение шин болтами и сваркой
- •Рекомендуемые удельные давления
- •Рекомендуемые крутящие моменты при затяжке болтов кс
- •2.3.6. Подсоединение проводов к выводам машин и аппаратов
- •2.3.7. Присоединение шин, жил проводов и кабелей к выводам электрооборудования, зажимам, троллеям и шинопроводам
- •Размеры унифицированных плоских выводов
- •Размеры унифицированных штыревых выводов
- •Диаметры штыревого вывода и шины
- •2.4. Стандартные сечения, конструктивное исполнение и номенклатура жил кабелей, голых и изолированных проводов
- •3. Трансформаторы
- •3.1. Регулирование напряжения, переключающие устройства
- •3.2. Сушка трансформатора
- •3.3. Нагрев и охлаждение трансформатора
- •3.4. Режимы работы трансформаторов
- •3.5. Буквенные обозначения в аббревиатуре силовых трансформаторов общего и специального назначения
- •3.6. Эксплуатация трансформаторов
- •3.7. Маслонаполненные вводы силовых трансформаторов и выключателей
- •3.8. Испытание и наладка силовых трансформаторов
- •3.9. Наладка систем охлаждения, газовой защиты, реле уровня масла, манометрических термометров и встроенных трансформаторов тока
- •3.10. Трансформаторное масло
- •3.11. Силовые трансформаторы как потребители реактивной мощности
- •Предельные допустимые значения показателей качества трансформаторного масла
- •3.12. Определение характеристик холостого хода, короткого замыкания и параметров активных и пассивных элементов схемы замещения силового трансформатора
- •Допустимая перегрузка трансформаторов в аварийных случаях
- •3.13. Перегрузки трансформаторов
- •4. Эксплуатация трансформаторного масла
- •4.1. Краткие сведения об изоляционных маслах
- •4.1.1. Способы приготовления масел
- •4.1.2. Периодичность отбора проб трансформаторного масла из маслонаполненного оборудования
- •4.2. Стабилизация масел
- •4.2.1. Стабилизация масла дибутилпаракрезолом
- •4.2.2. Стабилизация масла амидопирином
- •4.2.3. Введение антраниловой кислоты
- •4.3. Порядок смешения масел при монтаже и в эксплуатации
- •4.4. Испытания масел, находящихся в эксплуатации [22]
- •4.4.1. Определение цвета
- •4.4.2. Определение механических примесей по внешнему виду
- •4.4.3. Определение воды по способу потрескивания
- •4.4.4. Определение электрической прочности
- •4.4.5. Определение температуры вспышки в закрытом тигле
- •4.4.6. Определение кислотного числа
- •4.4.7. Определение водорастворимых кислот и щелочей
- •4.4.8. Количественное определение содержания водорастворимых (низкомолекулярных) кислот
- •4.5. Масляное хозяйство
- •5. Монтаж и эксплуатация конденсаторов
- •5.1. Монтаж и приемо-сдаточные испытания конденсаторов
- •Одноминутные испытательные напряжения, в, для конденсаторов типа км при испытании напряжением переменного тока с частотой 50 Гц
- •Минимальные емкости конденсаторов
- •5.2. Эксплуатация ку
- •5.2.1. Осмотры и испытания ку во время эксплуатации
- •5.2.2. Вспомогательное оборудование помещений ку
- •5.2.3. Техника безопасности при эксплуатации ку
- •5.3. Обзор оборудования отрасли конденсаторостроения
- •5.4. Контакторы
- •Технические характеристики конденсаторных контакторов
- •Технические данные тиристорных контакторов tsm-at, tsm-c, tsm-lc производства «epcos ag»
- •6. Электрические двигатели
- •6.1. Общие сведения
- •6.2. Типы и конструкция электрических машин
- •6.3. Регулируемые вентильные электродвигатели серии вц
- •6.4. Монтаж электрических машин
- •6.5. Монтаж пускорегулирующих аппаратов и устройств
- •6.5.1. Монтаж низковольтных аппаратов управления
- •6.5.2. Монтаж пускорегулирующих устройств
- •6.6. Приспособления и приборы для ремонта и профилактических испытаний электрических машин (эм) и трансформаторов
- •6.7. Оперативное обслуживание электродвигателей
- •7. Подстанции, распределительные устройства и токопроводы напряжением выше одного кВ
- •7.1. Монтаж распределительных устройств и комплектных подстанций
- •7.2. Вторичные цепи ру и ктп
- •7.3. Эксплуатация пс и ру
- •8. Воздушные линии электропередачи
- •Конструктивные размеры вл
- •8.1. Прокладка воздушных линий электропередач
- •8.1.1. Сборка опор
- •8.1.2. Фундаменты опор
- •8.1.3. Установка опор
- •8.1.4. Монтаж проводов
- •8.2. Эксплуатация, профилактика и ремонт вл
- •8.3. Компактные воздушные линии электропередачи
- •9. Кабельные линии
- •9.1. Конструкция кабелей
- •9.2. Прокладка кабелей
- •9.2.1. Прокладка кабелей внутри и вне зданий
- •Радиусы изгиба кабеля
- •9.2.2. Пересечения и сближения
- •9.2.3. Бестраншейная прокладка кабелей
- •9.2.4. Маркировка кабельных линий
- •9.3. Параметры схем замещения кл
- •Рабочая ёмкость c0 · 10-6 трёхжильных кабелей с поясной изоляцией, ф/м
- •9.4. Пуско-наладочные работы и профилактические испытания кабельных линий
- •9.5. Эксплуатационные требования к кабельным линиям
- •10. Электропроводки и освещение
- •10.1. Современные способы крепления электрооборудования и элементов электросетей к строительным конструкциям зданий [5]
- •10.1.1. Типы дюбелей и области их применения
- •10.1.2. Приклеивание элементов электропроводок [5]
- •10.1.3. Механизация пробивных и крепежных работ
- •10.2. Электропроводки
- •10.2.1. Общие требования к выполнению электропроводок
- •10.2.2. Прокладка проводов и кабелей на лотках и в коробах
- •10.2.3. Прокладка проводов на изолирующих опорах
- •10.2.4. Прокладка проводов и кабелей на стальных тросах
- •10.2.5. Прокладка установочных проводов по строительным основаниям и внутри основных строительных конструкций
- •10.2.6. Прокладка проводов и кабелей в стальных трубах
- •Допустимые расстояния между креплениями
- •10.2.7. Прокладка проводов и кабелей в неметаллических трубах
- •Расстояния между подвижными креплениями
- •10.2.8. Монтаж электропроводок в трубах
- •10.2.9. Монтаж магистральных и распределительных шинопроводов
- •Технология монтажа шинопроводов
- •10.2.10. Монтаж электропроводок на троллеях
- •10.3. Электрическое освещение
- •10.3.1. Устройство осветительных установок
- •Экономия электроэнергии при замене источников света на более эффективные
- •10.3.2. Светильники
- •10.3.3. Монтаж осветительных электропроводок
- •11. Электробезопасность и заземление
- •11.1. Электробезопасность
- •11.1.1. Мероприятия, обеспечивающие электробезопасность в дэу
- •11.1.2. Меры, обеспечивающие электробезопасность в дэу
- •Испытательное напряжение обмоток трансформаторов с нормальной изоляцией
- •Сопротивление изоляции аб
- •Коэффициенты пересчёта
- •11.1.3. Средства, обеспечивающие электробезопасность в дэу
- •Характеристики пробивных предохранителей
- •11.2. Защитные заземления в электротехнических установках. Основные понятия
- •11.2.1. Опасность поражения электрическим током
- •11.2.2. Мероприятия по защите от поражения электрическим током
- •11.2.3. Токи замыкания на землю в сетях различных систем
- •11.2.4. Сопротивление заземляющего устройства
- •11.2.5. Напряжение шага, напряжение прикосновения
- •Р ис. 11.8. Кривые растекания тока I, напряжения прикосновения II, напряжение шага Uш
- •11.2.6. Выравнивание потенциалов
- •11.3. Устройство заземлений
- •11.3.1. Оборудование, подлежащее заземлению
- •11.3.2. Связь между заземлениями разных напряжений
- •11.3.3. Связь между заземлениями разных назначений
- •11.4. Зануление
- •11.4.1. Механизм действия зануления. Требования ко времени отключения при пробое изоляции на корпус
- •Наибольшее допустимое время защитного автоматического отключения для системы tn
- •11.4.2. Сопротивление петли фаза-нуль
- •11.4.3. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземлённой нейтралью
- •11.4.4. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью
- •11.4.5. Заземления в установках с изолированной нейтралью напряжением до 1 кВ
- •11.4.6. Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземлённой нейтралью
- •Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле
- •Наименьшие сечения защитных проводников
- •11.5. Заземлители
- •11.5.1. Удельное сопротивление грунта
- •11.5.2. Естественные заземлители
- •11.5.3. Искусственные заземлители
- •11.5.4. Явления экранирования
- •11.5.5. Заземляющая система тросы – опоры
- •11.6. Прокладка заземляющих проводников, их соединения и присоединения
- •Минимальные размеры заземляющих стальных проводников и элементов заземлителей
- •12. Компенсация реактивной мощности
- •Предельные значения крм в часы наибольших нагрузок
- •12.1. Конденсаторные установки
- •12.1.1. Синхронные двигатели
- •12.1.2. Пассивные фильтры
- •12.1.3. Активные фильтры
- •12.1.4. Статические тиристорные компенсаторы
- •12.1.5. Компенсаторы реактивной мощности статком
- •12.2. Условности при использовании понятий кажущейся и реактивной мощностей
- •12.3. Потери, вызываемые передачей реактивной мощности
- •12.4. Потребители и источники рм
- •12.5. Сущность крм
- •12.6. Технические эффекты крм
- •12.7. Места установки конденсаторов
- •12.8. Возможности многофункционального использования трехфазных несимметричных кб
- •13. Рациональное использование электрической энергии
- •13.1. Показатели и нормы качества электроэнергии
- •13.2.Влияние сечения нулевого провода на потери активной мощности и уравновешивание токов нулевой последовательности
- •13.3. Оптимизация режимов электропотребления
- •13.3.1. Потери электроэнергии при раздельной и параллельной работе радиальных линий
- •13.3.2. О равномерном графике электропотребления
- •13.3.3. Типы моделей графиков мощности в узлах сети и погрешности моделирования
- •13.4. Основные характеристики индивидуальных и групповых графиков нагрузки пээ
- •13.4.1. Показатели индивидуальных графиков нагрузки пээ
- •13.4.2. Показатели групповых графиков нагрузки
- •13.4.3. Технологические графики нагрузки
- •13.5. Основные положения теории выравнивания групповых графиков нагрузки
- •13.6. Примеры расчётов показателей индивидуальных и групповых графиков нагрузок
- •Графики активной мощности:
11.4. Зануление
Преднамеренное соединение с глухо заземлённой нейтралью генератора или трансформатора на стороне до 1 кВ с помощью нулевого (нейтрального провода) частей электроустановки, нормально не находящихся под напряжением, как известно, называют занулением.
Нулевой рабочий проводник N в трёхфазных сетях служит для подключения однофазных приёмников. Нулевой защитный проводник PE необходим в целях электробезопасности.
11.4.1. Механизм действия зануления. Требования ко времени отключения при пробое изоляции на корпус
Зануление применяют в четырёхпроводных сетях напряжением до 1 кВ с заземлённой нейтралью, поскольку в них защитное заземление малоэффективно: ток замыкания на землю зависит от сопротивления заземления. Поэтому, с точки зрения электробезопасности, в этих сетях эффективна другая мера – снижение времени замыкания на корпус. Этому способствует зануление, которое превращает замыкание на корпус в однофазное короткое замыкание, что приводит к срабатыванию защит и селективному отключению повреждённого участка сети, а также к снижению потенциала корпусов.
Время срабатывания защит не должно превышать 1 с.
При выполнении автоматического отключения питания в электроустановках до 1 кВ все открытые проводящие части должны быть присоединены к глухозаземлённой нейтрали источника питания, если применена система TN, а время отключения не должно превышать значений, указанных в табл. 11.4.
Таблица 11.4
Наибольшее допустимое время защитного автоматического отключения для системы tn
Номинальное фазное напряжение, В |
Время отключения, с |
127 220 380 Более 380 |
0,8 0,4 0,3 0,1 |
Для автоматического отключения питания могут применяться защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток. В электроустановках, в которых применено автоматическое отключение питания в качестве защитной меры, должно быть выполнено уравнивание потенциалов.
Время срабатывания защит не должно превышать 5 с в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки.
Повторное заземление нулевого провода сводится к снижению напряжения корпусов, особенно при обрыве нулевого провода. Для ВЛ оно должно выполняться через каждые 250 м её длины и на концевых ответвлениях длинной более 200 м. Сопротивления заземляющих устройств, с которыми соединяют нейтрали трансформаторов, должны быть не более 4 Ом, а у повторных заземлений – 10 Ом.
В целях обеспечения быстродействия защит ток КЗ должен не менее чем в 3 раза превышать ток плавкой вставки предохранителя или ток срабатывания расцепителя автоматического выключателя. Полная проводимость нулевого провода для промышленных предприятий должна быть не менее 50 % проводимости фазного провода, а в коммунальных сетях – равной проводимости фазного провода.
Запрещается установка в нулевой провод предохранителей и автоматических выключателей. Исключением из этого правила является случай, когда выключатель одновременно вместе с нулевым размыкает и фазные провода.
Можно ли обеспечить условия безопасности в сети с заземленной нейтралью при выполнении простого заземления электроприемников, а не их зануления?
Ток замыкания ограничен сопротивлениями нулевого провода R0 и заземлителя Rз. Он недостаточен, чтобы расплавить в предохранителе плавкую вставку. Если считать, что вблизи трансформатора заземленных приемников нет и что напряжение корпуса приемника не должно превышать 65 В (из условия требований ПТБ), то
Uф · Rз / (R0 + Rз) 65.
Если Uф = 220 В, имеем Rз ≤ 0,42 R0, т.е. Rз должно быть в 2,5 раза меньше сопротивления R0. Но последнее не может быть более 4 Ом, т.к. оно не выполнит своих защитных свойств, следовательно, Rз ≤ 0,42 · 4 = 0,16 Ом. Создание такого сопротивления связано с большими затратами.
Безопасностью в этом случае могла бы быть наилучшим образом достигнура при быстром отключении сети (зануление).
Максимальное значение напряжения относительно земли в месте замыкания равно падению напряжения в этом проводнике
Uз/ = Iз · Rн,
где Rн – сопротивление нулевого (зануляющего) проводника.
Следовательно, когда связываем контура подстанций, искуственно создаем сеть зануления.
Чем больше Rн, т.е. чем протяженнее связь (чем дальше подстанции друг от друга), тем выше потенциал на корпусе.
Если в качестве зануляющего проводника сталь, вместо Rн следует брать Zн, т.к. сталь обладает индуктивным сопротивлением.
Чем больше Rн, тем больше ток через тело человека:
Iч = Iз – Iз/.
Для кратковременности аварийного режима необходимо обеспечить такое сопротивление петли фаза – нуль, чтобы ток расплавил вставку, т.е. чтобы ток замыкания отвечал условию
Iз ≥ K · Iн.
K = 1,5 – при защите автоматическими выключателями.
K = 3 – при защите плавкой вставкой предохранителей.
Если следовать этому, то сечение фазного провода меньше, чем у нулевого. Этот путь связан с затратой металла.
ПУЭ предусматривают обязательным условие 0,5 · Rн = Rф.
Выполнение этого условия обеспечивает надежное отключение в сетях промышленных предприятий, т.к. в цепях имеется оборудование, которое выравнивает потенциал и снижает сопротивление петли фаза – нуль. Столь благоприятные условия имеются не во всех производственных помещениях.
В удаленных от подстанции пунктах при недостаточной проводимости сети может иметь место замедленное отключение. Оно усугубляется загрублением защиты, часто встречающемся в практике.
Сочетание заземлений и занулений.
В сетях с изолированной нейтраью применение занулений не должно допускаться, т.к. это приведет к появлению недопустимых потенциалов на зануленных корпусах электроприемников.
Человек, касаясь совершенно исправного оборудования подвергается действию фазного напряжения.
Применение зануления для одних предметов электрооборудования и заземления для других – в одной и той же сети, питающейся от одного (или параллельно работающих) генератора или трансформатора недопустимо.
