- •Предисловие
- •Список основных используемых сокращений
- •Термины и определения
- •Введение
- •В1. Роль российских ученых в развитии систем электроснабжения
- •В2. Проблемы развития систем электроснабжения
- •В3. Перспективы развития систем электроснабжения
- •1. Общие вопросы электромонтажных и пусконаладочных работ, эксплуатации и ремонта электрооборудования
- •1.1. Система нормативных документов
- •1.1.1. Классификация электроустановок, помещений и электрооборудования
- •1.1.2. Проектная документация
- •1.1.3. Условные графические обозначения
- •1.1.4. Маркировка цепей в электрических схемах
- •1.2. Требования действующих директивных документов к выполнению электромонтажных и пусконаладочных работ
- •1.2.1. Управление электромонтажным производством
- •1.2.2. Подготовка и производство электромонтажных работ
- •1.2.3. Основные принципы выполнения электромонтажных работ в две стадии
- •1.2.4. Четыре этапа пусконаладочных работ
- •1.2.5. Научная организация труда на рабочем месте
- •1.3. Требования действующих директивных документов к эксплуатации электроустановок
- •1.3.1. Электротехнический персонал
- •1.3.2. Ответственный за электрохозяйство
- •1.3.3. Порядок производства переключений в дэу
- •1.3.4. Техническое обслуживание, диагностика, ремонт, модернизация и реконструкция оборудования электроустановок
- •1.3.5. Порядок и условия производства работ в дэу
- •2. Контактные соединения проводов, жил кабелей и шин
- •2.1. Общие сведения о контактных соединениях
- •2.2. Классификация и общие технические требования к контактным электрическим соединениям
- •2.3. Способы выполнения контактных соединений и области их применения
- •2.3.1. Подготовка контактных элементов к соединению
- •2.3.2. Соединение и оконцевание проводов опрессовкой
- •2.3.3. Соединение и оконцевание проводов сваркой
- •2.3.4. Соединение и оконцевание проводов пайкой
- •2.3.5. Соединение шин болтами и сваркой
- •Рекомендуемые удельные давления
- •Рекомендуемые крутящие моменты при затяжке болтов кс
- •2.3.6. Подсоединение проводов к выводам машин и аппаратов
- •2.3.7. Присоединение шин, жил проводов и кабелей к выводам электрооборудования, зажимам, троллеям и шинопроводам
- •Размеры унифицированных плоских выводов
- •Размеры унифицированных штыревых выводов
- •Диаметры штыревого вывода и шины
- •2.4. Стандартные сечения, конструктивное исполнение и номенклатура жил кабелей, голых и изолированных проводов
- •3. Трансформаторы
- •3.1. Регулирование напряжения, переключающие устройства
- •3.2. Сушка трансформатора
- •3.3. Нагрев и охлаждение трансформатора
- •3.4. Режимы работы трансформаторов
- •3.5. Буквенные обозначения в аббревиатуре силовых трансформаторов общего и специального назначения
- •3.6. Эксплуатация трансформаторов
- •3.7. Маслонаполненные вводы силовых трансформаторов и выключателей
- •3.8. Испытание и наладка силовых трансформаторов
- •3.9. Наладка систем охлаждения, газовой защиты, реле уровня масла, манометрических термометров и встроенных трансформаторов тока
- •3.10. Трансформаторное масло
- •3.11. Силовые трансформаторы как потребители реактивной мощности
- •Предельные допустимые значения показателей качества трансформаторного масла
- •3.12. Определение характеристик холостого хода, короткого замыкания и параметров активных и пассивных элементов схемы замещения силового трансформатора
- •Допустимая перегрузка трансформаторов в аварийных случаях
- •3.13. Перегрузки трансформаторов
- •4. Эксплуатация трансформаторного масла
- •4.1. Краткие сведения об изоляционных маслах
- •4.1.1. Способы приготовления масел
- •4.1.2. Периодичность отбора проб трансформаторного масла из маслонаполненного оборудования
- •4.2. Стабилизация масел
- •4.2.1. Стабилизация масла дибутилпаракрезолом
- •4.2.2. Стабилизация масла амидопирином
- •4.2.3. Введение антраниловой кислоты
- •4.3. Порядок смешения масел при монтаже и в эксплуатации
- •4.4. Испытания масел, находящихся в эксплуатации [22]
- •4.4.1. Определение цвета
- •4.4.2. Определение механических примесей по внешнему виду
- •4.4.3. Определение воды по способу потрескивания
- •4.4.4. Определение электрической прочности
- •4.4.5. Определение температуры вспышки в закрытом тигле
- •4.4.6. Определение кислотного числа
- •4.4.7. Определение водорастворимых кислот и щелочей
- •4.4.8. Количественное определение содержания водорастворимых (низкомолекулярных) кислот
- •4.5. Масляное хозяйство
- •5. Монтаж и эксплуатация конденсаторов
- •5.1. Монтаж и приемо-сдаточные испытания конденсаторов
- •Одноминутные испытательные напряжения, в, для конденсаторов типа км при испытании напряжением переменного тока с частотой 50 Гц
- •Минимальные емкости конденсаторов
- •5.2. Эксплуатация ку
- •5.2.1. Осмотры и испытания ку во время эксплуатации
- •5.2.2. Вспомогательное оборудование помещений ку
- •5.2.3. Техника безопасности при эксплуатации ку
- •5.3. Обзор оборудования отрасли конденсаторостроения
- •5.4. Контакторы
- •Технические характеристики конденсаторных контакторов
- •Технические данные тиристорных контакторов tsm-at, tsm-c, tsm-lc производства «epcos ag»
- •6. Электрические двигатели
- •6.1. Общие сведения
- •6.2. Типы и конструкция электрических машин
- •6.3. Регулируемые вентильные электродвигатели серии вц
- •6.4. Монтаж электрических машин
- •6.5. Монтаж пускорегулирующих аппаратов и устройств
- •6.5.1. Монтаж низковольтных аппаратов управления
- •6.5.2. Монтаж пускорегулирующих устройств
- •6.6. Приспособления и приборы для ремонта и профилактических испытаний электрических машин (эм) и трансформаторов
- •6.7. Оперативное обслуживание электродвигателей
- •7. Подстанции, распределительные устройства и токопроводы напряжением выше одного кВ
- •7.1. Монтаж распределительных устройств и комплектных подстанций
- •7.2. Вторичные цепи ру и ктп
- •7.3. Эксплуатация пс и ру
- •8. Воздушные линии электропередачи
- •Конструктивные размеры вл
- •8.1. Прокладка воздушных линий электропередач
- •8.1.1. Сборка опор
- •8.1.2. Фундаменты опор
- •8.1.3. Установка опор
- •8.1.4. Монтаж проводов
- •8.2. Эксплуатация, профилактика и ремонт вл
- •8.3. Компактные воздушные линии электропередачи
- •9. Кабельные линии
- •9.1. Конструкция кабелей
- •9.2. Прокладка кабелей
- •9.2.1. Прокладка кабелей внутри и вне зданий
- •Радиусы изгиба кабеля
- •9.2.2. Пересечения и сближения
- •9.2.3. Бестраншейная прокладка кабелей
- •9.2.4. Маркировка кабельных линий
- •9.3. Параметры схем замещения кл
- •Рабочая ёмкость c0 · 10-6 трёхжильных кабелей с поясной изоляцией, ф/м
- •9.4. Пуско-наладочные работы и профилактические испытания кабельных линий
- •9.5. Эксплуатационные требования к кабельным линиям
- •10. Электропроводки и освещение
- •10.1. Современные способы крепления электрооборудования и элементов электросетей к строительным конструкциям зданий [5]
- •10.1.1. Типы дюбелей и области их применения
- •10.1.2. Приклеивание элементов электропроводок [5]
- •10.1.3. Механизация пробивных и крепежных работ
- •10.2. Электропроводки
- •10.2.1. Общие требования к выполнению электропроводок
- •10.2.2. Прокладка проводов и кабелей на лотках и в коробах
- •10.2.3. Прокладка проводов на изолирующих опорах
- •10.2.4. Прокладка проводов и кабелей на стальных тросах
- •10.2.5. Прокладка установочных проводов по строительным основаниям и внутри основных строительных конструкций
- •10.2.6. Прокладка проводов и кабелей в стальных трубах
- •Допустимые расстояния между креплениями
- •10.2.7. Прокладка проводов и кабелей в неметаллических трубах
- •Расстояния между подвижными креплениями
- •10.2.8. Монтаж электропроводок в трубах
- •10.2.9. Монтаж магистральных и распределительных шинопроводов
- •Технология монтажа шинопроводов
- •10.2.10. Монтаж электропроводок на троллеях
- •10.3. Электрическое освещение
- •10.3.1. Устройство осветительных установок
- •Экономия электроэнергии при замене источников света на более эффективные
- •10.3.2. Светильники
- •10.3.3. Монтаж осветительных электропроводок
- •11. Электробезопасность и заземление
- •11.1. Электробезопасность
- •11.1.1. Мероприятия, обеспечивающие электробезопасность в дэу
- •11.1.2. Меры, обеспечивающие электробезопасность в дэу
- •Испытательное напряжение обмоток трансформаторов с нормальной изоляцией
- •Сопротивление изоляции аб
- •Коэффициенты пересчёта
- •11.1.3. Средства, обеспечивающие электробезопасность в дэу
- •Характеристики пробивных предохранителей
- •11.2. Защитные заземления в электротехнических установках. Основные понятия
- •11.2.1. Опасность поражения электрическим током
- •11.2.2. Мероприятия по защите от поражения электрическим током
- •11.2.3. Токи замыкания на землю в сетях различных систем
- •11.2.4. Сопротивление заземляющего устройства
- •11.2.5. Напряжение шага, напряжение прикосновения
- •Р ис. 11.8. Кривые растекания тока I, напряжения прикосновения II, напряжение шага Uш
- •11.2.6. Выравнивание потенциалов
- •11.3. Устройство заземлений
- •11.3.1. Оборудование, подлежащее заземлению
- •11.3.2. Связь между заземлениями разных напряжений
- •11.3.3. Связь между заземлениями разных назначений
- •11.4. Зануление
- •11.4.1. Механизм действия зануления. Требования ко времени отключения при пробое изоляции на корпус
- •Наибольшее допустимое время защитного автоматического отключения для системы tn
- •11.4.2. Сопротивление петли фаза-нуль
- •11.4.3. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземлённой нейтралью
- •11.4.4. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью
- •11.4.5. Заземления в установках с изолированной нейтралью напряжением до 1 кВ
- •11.4.6. Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземлённой нейтралью
- •Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле
- •Наименьшие сечения защитных проводников
- •11.5. Заземлители
- •11.5.1. Удельное сопротивление грунта
- •11.5.2. Естественные заземлители
- •11.5.3. Искусственные заземлители
- •11.5.4. Явления экранирования
- •11.5.5. Заземляющая система тросы – опоры
- •11.6. Прокладка заземляющих проводников, их соединения и присоединения
- •Минимальные размеры заземляющих стальных проводников и элементов заземлителей
- •12. Компенсация реактивной мощности
- •Предельные значения крм в часы наибольших нагрузок
- •12.1. Конденсаторные установки
- •12.1.1. Синхронные двигатели
- •12.1.2. Пассивные фильтры
- •12.1.3. Активные фильтры
- •12.1.4. Статические тиристорные компенсаторы
- •12.1.5. Компенсаторы реактивной мощности статком
- •12.2. Условности при использовании понятий кажущейся и реактивной мощностей
- •12.3. Потери, вызываемые передачей реактивной мощности
- •12.4. Потребители и источники рм
- •12.5. Сущность крм
- •12.6. Технические эффекты крм
- •12.7. Места установки конденсаторов
- •12.8. Возможности многофункционального использования трехфазных несимметричных кб
- •13. Рациональное использование электрической энергии
- •13.1. Показатели и нормы качества электроэнергии
- •13.2.Влияние сечения нулевого провода на потери активной мощности и уравновешивание токов нулевой последовательности
- •13.3. Оптимизация режимов электропотребления
- •13.3.1. Потери электроэнергии при раздельной и параллельной работе радиальных линий
- •13.3.2. О равномерном графике электропотребления
- •13.3.3. Типы моделей графиков мощности в узлах сети и погрешности моделирования
- •13.4. Основные характеристики индивидуальных и групповых графиков нагрузки пээ
- •13.4.1. Показатели индивидуальных графиков нагрузки пээ
- •13.4.2. Показатели групповых графиков нагрузки
- •13.4.3. Технологические графики нагрузки
- •13.5. Основные положения теории выравнивания групповых графиков нагрузки
- •13.6. Примеры расчётов показателей индивидуальных и групповых графиков нагрузок
- •Графики активной мощности:
11.2. Защитные заземления в электротехнических установках. Основные понятия
Электроустановки в отношении мер электробезопасности согласно ПУЭ разделяются на:
- электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью;
- электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;
- электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;
- электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.
11.2.1. Опасность поражения электрическим током
Поражения электрическим током делят на:
1. Поражения непосредственного прикосновения или недопустимого приближения к токоведущим частям, находящимся под напряжением;
2. Поражения, вызванные прикосновением к конструкциям, которые оказались под напряжением в результате повреждения изоляции;
3. Поражения «напряжения шага».
Факторами поражения электрическим током являются либо возникновение цепи электрического тока через тело человека, либо внешние его воздействия, такие как ожог, ослепление, либо совмещение этих факторов.
Характер поражения зависит от физических и физиологических обстоятельств.
Механизм поражения людей электрическим током, величина поражающего тока и связанные с поражениями явления, происходящие в сложном человеческом организме, еще недостаточно изучены.
Принято считать, что безусловно смертельным является ток 100 мА, но были смертельные случаи и при меньших токах.
Существует несколько теорий, объясняющих механизм поражения током:
1. Электролитическое разложение крови, поляризационные процессы при этом раздражают нервную систему, что служит причиной поражения;
2. Возникновение фибрилляций сердца, приводящих к необратимой остановке кровообращения;
3. Рефлекторные явления, вызванные процессами возбуждения и торможения при внезапном действии тока.
Переменный ток воздействует на человеческий организм сильнее постоянного.
Опасность поражения снижается с повышением частоты.
Сама по себе величина напряжения не может служить критерием поражения, поэтому опасным считается напряжение 60 В, а в особо сырых помещениях и резервуарах – 12 В.
На величину поражающего тока влияют окружающая температура, влажность, проводимость полов, состояние обуви, путь прохождения тока через тело человека.
В ряде случаев может наступить «мнимая смерть», что вызвано функциональным расстройством, но путем искусственного дыхания может быть восстановлена деятельность легких и сердца.
Различие взглядов по вопросам травматизма не препятствует установлению норм, обеспечивающих безопасность людей.
11.2.2. Мероприятия по защите от поражения электрическим током
Большое влияние на исход поражения оказывает продолжительность воздействия тока. В этой связи схема сети играет весьма важную роль в обеспечении безопасности. В главе 1 скрупулёзно выполнен анализ режимов нейтралей сетей. Поскольку в сетях с изолированной нейтралью дело имеют с малыми токами при замыкании фазы на землю, то очень сложно организовать отключение повреждённых участков в них. Сети с изолированной нейтралью, с позиций электробезопасности, опаснее, чем сети с глухим заземлением нейтрали. Поэтому более подробно остановимся на этом аспекте. Векторные диаграммы напряжений в сетях с изолированной нейтралью показаны на (рис. 11.7).
|
|
|
а) |
б) |
в) |
Рис. 11.7. Векторные диаграммы напряжений в сетях с изолированной нейтралью:
а – при равном состоянии изоляции всех фаз; б – при пониженной изоляции фазы А; с – при замыкании на землю фазы А.
Нейтраль (а при наличии изолированного от земли нейтрального провода также и этот провод) в зависимости от состояния изоляции отдельных фаз сети может иметь напряжение по отношению к земле – от фазного до 0.
Через место повреждения изоляции будет протекать ток, равный геометрической сумме активных токов утечки и ёмкостных токов двух других фаз.
Повреждение изоляции, при котором происходит электрическое соединение находящихся под напряжением частей установки с заземленными конструктивными частями или непосредственно с землей, называется однофазным замыканием на землю, а возникающий при этом ток через место замыкания – током однофазного замыкания на землю.
Напряжение, воздействию которого непосредственно подвергается тело человека в сети с изолированной нейтралью, представляет собой часть междуфазного напряжения, действующего в цепи замыкания, при прикосновении человека к проводнику, находящемуся под напряжением, которое зависит от соотношения величин сопротивления цепи.
Если нейтраль сети заземлена, то напряжения отдельных фаз по отношению к земле практически постоянны и равны фазному. В этом случае напряжение, воздействию которого подвергается тело человека, представляет лишь часть фазного напряжения.
Поражения, вызванные прикосновением к конструкциям или корпусам, оказавшимся под напряжением вследствие нарушения изоляции, предотвращается путем устройства защитных заземлений.
Заземление, устраиваемое при помощи заземляющих проводников и «заземлителей» с целью обеспечения безопасности, представляет собой преднамеренное соединение с землей металлических частей электроустановки, нормально не находяшихся под напряжением.
Системы заземления, согласно требованиям главы 1.7 ПУЭ, обозначают двумя прописными латинскими буквами. Первая буква характеризует состояние нейтрали источника питания относительно земли: T – заземлённая нейтраль, I – изолированная нейтраль. Вторая буква в обозначении системы заземления характеризует состояние открытых проводящих частей относительно земли: T – заземлены, независимо от отношения к земле источника питания, N – присоединены к глухозаземлённой нейтрали источника питания. Последнее имеет место в сетях до 1 кВ для частного случая заземления – зануления.
Назначение защитного заземления заключается в создании между металлическими конструкциями или корпусом защищаемого устройства и землей электрического соединения достаточно малого сопротивления. Оно применяется во всех сетях с изолированной нейтралью, а также в сетях выше 1000 В с заземленной нейтралью. В первом случае система заземления – IT, во втором – TT.
В установках 220 и 380 В с заземленной нейтралью трансформаторов и генераторов применяется система заземления TN, при которой заземляющие проводники соединены с нейтралью, – зануление, основным назначением которого является обеспечение отключения участка сети, на котором произошло замыкание. В свою очередь, в системе обозначения зануления после основных двух букв через дефис могут быть после N буквы, характеризующие совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
- S – нулевой рабочий (N) и нулевой защитный (PE) проводники разделены (система TN - S);
- C – функции нулевого защитного и нулевого рабочего проводника совмещены в одном проводнике (PEN – проводник), система TN - C.
Не допускается в системе TN - C применять УЗО, реагирующие на дифференциальный ток.
Правила допускают применение системы TN - C - S, когда рабочий нулевой провод и защитный нулевой провод совмещены в одном проводнике только в части системы у источника питания, а затем они разделены. Запрещается после разделения проводов их функции снова объединять в одном проводе со стороны нагрузки.
Применяются в отдельных случаях меры защиты, основанные на других принципах:
1. Защитное отключение;
2. Изоляция от земли конструкций, на которых работают люди;
3. Применение малых напряжений;
4. Выполнение корпусов переносного электрооборудования из изоляционных материалов.
Всегда важнейшим мероприятием является поддержание изоляции на должном уровне, путем периодического контроля и испытаний.
