Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие 13.05.14.docx
Скачиваний:
7
Добавлен:
01.07.2025
Размер:
43.34 Mб
Скачать

9.2.4. Маркировка кабельных линий

После окончания монтажа кабельной сети трассы кабельных линий наносят на план с привязкой их координат к существующим постоянным строениям. Если трасса не может быть нанесена на план, то по ней наносят опознавательные знаки, к которым и производится привязка линии. Маркировку кабельных линий и установку опознавательных знаков и надписей по трассе выполняют в соответствии с требованиями: каждая кабельная линия должна иметь свой номер или наименование. Если кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т.д. Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначением: на бирках кабелей и концевых муфт – марки, напряжения, сечения, номера или наименования линий; на бирках соединительных муфт – номера муфты и даты монтажа. Бирки должны быть стойкими к воздействию окружающей среды. На кабелях, проложенных в кабельных сооружениях, бирки должны располагаться по длине не реже, чем через каждые 50 м. На трассе кабельной линии, проложенной в незастроенной местности, должны быть установлены опознавательные знаки. Трасса кабельной линии, проложенной по пахотным землям, должна быть обозначена знаками, устанавливаемыми не реже, чем через 500 м, а также в местах изменения направления трассы.

На опознавательных знаках указывают номер пикета (например, ПК-17) и знак напряжения – красной краской; остальное – черной.

9.3. Параметры схем замещения кл

При выполнении расчётов реальные ЛЭП подменяют их моделями в виде схем замещения и систем уравнений. Любая фаза ЛЭП представляет собой цепь с равномерно распределёнными параметрами, однако в целях упрощения расчётов моделирование выполняют, применяя Т-образные, Г-образные, П-образные схемы с сосредоточенными параметрами. Наиболее целесообразным оказалось применение П-образных схем замещения. При этом продольные элементы в них изображают комплексными сопротивлениями, поперечные – проводимостями.

Значения параметров как сопротивлений, так и проводимостей определяют по общему выражению П = П0 · L, где П0 (R0, X0, g0, b0) – погонное значение продольного или поперечного параметра, отнесенное к одному км линии протяжённостью L.

Активное погонное сопротивление, Ом/км, при температуре окружающей среды 20°С

где    F – сечение жилы кабеля, мм2;

ρ – удельное активное сопротивление, Ом·мм2/км, материала провода, в зависимости от его марки, для алюминия – 29,5 … 31,5, для меди – 18 … 19.

При температуре t, °C, отличной от двадцати градусов,

.

Здесь α – температурный коэффициент электрического сопротивления, 1/град, (равен 0,00403 для алюминия, а для меди – 0,0043).

Погонные индуктивные сопротивления и ёмкостные проводимости кабелей принимают на основе заводских или каталожных данных. В табл. 9.2 приведены значения рабочей ёмкости трёхжильных кабелей с поясной изоляцией.

Таблица 9.2.

Рабочая ёмкость c0 · 10-6 трёхжильных кабелей с поясной изоляцией, ф/м

Напря-

жение, кВ

Сечение жилы

10

16

25

35

50

70

95

120

150

185

240

До 1

0,35

0,4

0,5

0,53

0,63

0,72

0,77

0,81

0,86

0,86

6

0,2

0,23

0,28

0,31

0,36

0,4

0,42

0,46

0,51

0,53

0,58

10

0,23

0,27

0,29

0,31

0,32

0,37

0,44

0,45

0,6

Ёмкостная погонная проводимость кабеля, См/км, определяется по формуле:

.

Под действием приложенного к КЛ напряжения через ёмкости протекают зарядные токи. Расчётное значение ёмкостной силы тока на единицу длины, кА/км

.

Значение зарядной мощности всей КЛ, Мвар:

,

где    ВС – ёмкостная проводимость, См, всей линии длиной L, км;

Uном – её номинальное напряжение, кВ.

Расчётное значение ёмкостной силы тока, А. во всей кабельной сети для одного и того же класса напряжения равно сумме силы тока отдельных кабелей, число которых – n, т.е.

.

В инженерной практике последнюю формулу используют при выборе и установке дугогасящих реакторов данного напряжения для компенсации ёмкостных токов. Работа сетей напряжением 6 … 35 кВ без их компенсации не допускается при превышении следующих значений токов:

Номинальное напряжение сети, кВ

6

10

15 … 20

≥35

Ёмкостный ток замыкания на землю, А

30

20

15

10

Параметры КЛ необходимы в качестве данных также при выборе средств компенсации реактивных нагрузок, определения потерь активной и реактивной мощности в них, при расчётах токов замыкания и выборе уставок устройств защиты и автоматики.