- •Предисловие
- •Список основных используемых сокращений
- •Термины и определения
- •Введение
- •В1. Роль российских ученых в развитии систем электроснабжения
- •В2. Проблемы развития систем электроснабжения
- •В3. Перспективы развития систем электроснабжения
- •1. Общие вопросы электромонтажных и пусконаладочных работ, эксплуатации и ремонта электрооборудования
- •1.1. Система нормативных документов
- •1.1.1. Классификация электроустановок, помещений и электрооборудования
- •1.1.2. Проектная документация
- •1.1.3. Условные графические обозначения
- •1.1.4. Маркировка цепей в электрических схемах
- •1.2. Требования действующих директивных документов к выполнению электромонтажных и пусконаладочных работ
- •1.2.1. Управление электромонтажным производством
- •1.2.2. Подготовка и производство электромонтажных работ
- •1.2.3. Основные принципы выполнения электромонтажных работ в две стадии
- •1.2.4. Четыре этапа пусконаладочных работ
- •1.2.5. Научная организация труда на рабочем месте
- •1.3. Требования действующих директивных документов к эксплуатации электроустановок
- •1.3.1. Электротехнический персонал
- •1.3.2. Ответственный за электрохозяйство
- •1.3.3. Порядок производства переключений в дэу
- •1.3.4. Техническое обслуживание, диагностика, ремонт, модернизация и реконструкция оборудования электроустановок
- •1.3.5. Порядок и условия производства работ в дэу
- •2. Контактные соединения проводов, жил кабелей и шин
- •2.1. Общие сведения о контактных соединениях
- •2.2. Классификация и общие технические требования к контактным электрическим соединениям
- •2.3. Способы выполнения контактных соединений и области их применения
- •2.3.1. Подготовка контактных элементов к соединению
- •2.3.2. Соединение и оконцевание проводов опрессовкой
- •2.3.3. Соединение и оконцевание проводов сваркой
- •2.3.4. Соединение и оконцевание проводов пайкой
- •2.3.5. Соединение шин болтами и сваркой
- •Рекомендуемые удельные давления
- •Рекомендуемые крутящие моменты при затяжке болтов кс
- •2.3.6. Подсоединение проводов к выводам машин и аппаратов
- •2.3.7. Присоединение шин, жил проводов и кабелей к выводам электрооборудования, зажимам, троллеям и шинопроводам
- •Размеры унифицированных плоских выводов
- •Размеры унифицированных штыревых выводов
- •Диаметры штыревого вывода и шины
- •2.4. Стандартные сечения, конструктивное исполнение и номенклатура жил кабелей, голых и изолированных проводов
- •3. Трансформаторы
- •3.1. Регулирование напряжения, переключающие устройства
- •3.2. Сушка трансформатора
- •3.3. Нагрев и охлаждение трансформатора
- •3.4. Режимы работы трансформаторов
- •3.5. Буквенные обозначения в аббревиатуре силовых трансформаторов общего и специального назначения
- •3.6. Эксплуатация трансформаторов
- •3.7. Маслонаполненные вводы силовых трансформаторов и выключателей
- •3.8. Испытание и наладка силовых трансформаторов
- •3.9. Наладка систем охлаждения, газовой защиты, реле уровня масла, манометрических термометров и встроенных трансформаторов тока
- •3.10. Трансформаторное масло
- •3.11. Силовые трансформаторы как потребители реактивной мощности
- •Предельные допустимые значения показателей качества трансформаторного масла
- •3.12. Определение характеристик холостого хода, короткого замыкания и параметров активных и пассивных элементов схемы замещения силового трансформатора
- •Допустимая перегрузка трансформаторов в аварийных случаях
- •3.13. Перегрузки трансформаторов
- •4. Эксплуатация трансформаторного масла
- •4.1. Краткие сведения об изоляционных маслах
- •4.1.1. Способы приготовления масел
- •4.1.2. Периодичность отбора проб трансформаторного масла из маслонаполненного оборудования
- •4.2. Стабилизация масел
- •4.2.1. Стабилизация масла дибутилпаракрезолом
- •4.2.2. Стабилизация масла амидопирином
- •4.2.3. Введение антраниловой кислоты
- •4.3. Порядок смешения масел при монтаже и в эксплуатации
- •4.4. Испытания масел, находящихся в эксплуатации [22]
- •4.4.1. Определение цвета
- •4.4.2. Определение механических примесей по внешнему виду
- •4.4.3. Определение воды по способу потрескивания
- •4.4.4. Определение электрической прочности
- •4.4.5. Определение температуры вспышки в закрытом тигле
- •4.4.6. Определение кислотного числа
- •4.4.7. Определение водорастворимых кислот и щелочей
- •4.4.8. Количественное определение содержания водорастворимых (низкомолекулярных) кислот
- •4.5. Масляное хозяйство
- •5. Монтаж и эксплуатация конденсаторов
- •5.1. Монтаж и приемо-сдаточные испытания конденсаторов
- •Одноминутные испытательные напряжения, в, для конденсаторов типа км при испытании напряжением переменного тока с частотой 50 Гц
- •Минимальные емкости конденсаторов
- •5.2. Эксплуатация ку
- •5.2.1. Осмотры и испытания ку во время эксплуатации
- •5.2.2. Вспомогательное оборудование помещений ку
- •5.2.3. Техника безопасности при эксплуатации ку
- •5.3. Обзор оборудования отрасли конденсаторостроения
- •5.4. Контакторы
- •Технические характеристики конденсаторных контакторов
- •Технические данные тиристорных контакторов tsm-at, tsm-c, tsm-lc производства «epcos ag»
- •6. Электрические двигатели
- •6.1. Общие сведения
- •6.2. Типы и конструкция электрических машин
- •6.3. Регулируемые вентильные электродвигатели серии вц
- •6.4. Монтаж электрических машин
- •6.5. Монтаж пускорегулирующих аппаратов и устройств
- •6.5.1. Монтаж низковольтных аппаратов управления
- •6.5.2. Монтаж пускорегулирующих устройств
- •6.6. Приспособления и приборы для ремонта и профилактических испытаний электрических машин (эм) и трансформаторов
- •6.7. Оперативное обслуживание электродвигателей
- •7. Подстанции, распределительные устройства и токопроводы напряжением выше одного кВ
- •7.1. Монтаж распределительных устройств и комплектных подстанций
- •7.2. Вторичные цепи ру и ктп
- •7.3. Эксплуатация пс и ру
- •8. Воздушные линии электропередачи
- •Конструктивные размеры вл
- •8.1. Прокладка воздушных линий электропередач
- •8.1.1. Сборка опор
- •8.1.2. Фундаменты опор
- •8.1.3. Установка опор
- •8.1.4. Монтаж проводов
- •8.2. Эксплуатация, профилактика и ремонт вл
- •8.3. Компактные воздушные линии электропередачи
- •9. Кабельные линии
- •9.1. Конструкция кабелей
- •9.2. Прокладка кабелей
- •9.2.1. Прокладка кабелей внутри и вне зданий
- •Радиусы изгиба кабеля
- •9.2.2. Пересечения и сближения
- •9.2.3. Бестраншейная прокладка кабелей
- •9.2.4. Маркировка кабельных линий
- •9.3. Параметры схем замещения кл
- •Рабочая ёмкость c0 · 10-6 трёхжильных кабелей с поясной изоляцией, ф/м
- •9.4. Пуско-наладочные работы и профилактические испытания кабельных линий
- •9.5. Эксплуатационные требования к кабельным линиям
- •10. Электропроводки и освещение
- •10.1. Современные способы крепления электрооборудования и элементов электросетей к строительным конструкциям зданий [5]
- •10.1.1. Типы дюбелей и области их применения
- •10.1.2. Приклеивание элементов электропроводок [5]
- •10.1.3. Механизация пробивных и крепежных работ
- •10.2. Электропроводки
- •10.2.1. Общие требования к выполнению электропроводок
- •10.2.2. Прокладка проводов и кабелей на лотках и в коробах
- •10.2.3. Прокладка проводов на изолирующих опорах
- •10.2.4. Прокладка проводов и кабелей на стальных тросах
- •10.2.5. Прокладка установочных проводов по строительным основаниям и внутри основных строительных конструкций
- •10.2.6. Прокладка проводов и кабелей в стальных трубах
- •Допустимые расстояния между креплениями
- •10.2.7. Прокладка проводов и кабелей в неметаллических трубах
- •Расстояния между подвижными креплениями
- •10.2.8. Монтаж электропроводок в трубах
- •10.2.9. Монтаж магистральных и распределительных шинопроводов
- •Технология монтажа шинопроводов
- •10.2.10. Монтаж электропроводок на троллеях
- •10.3. Электрическое освещение
- •10.3.1. Устройство осветительных установок
- •Экономия электроэнергии при замене источников света на более эффективные
- •10.3.2. Светильники
- •10.3.3. Монтаж осветительных электропроводок
- •11. Электробезопасность и заземление
- •11.1. Электробезопасность
- •11.1.1. Мероприятия, обеспечивающие электробезопасность в дэу
- •11.1.2. Меры, обеспечивающие электробезопасность в дэу
- •Испытательное напряжение обмоток трансформаторов с нормальной изоляцией
- •Сопротивление изоляции аб
- •Коэффициенты пересчёта
- •11.1.3. Средства, обеспечивающие электробезопасность в дэу
- •Характеристики пробивных предохранителей
- •11.2. Защитные заземления в электротехнических установках. Основные понятия
- •11.2.1. Опасность поражения электрическим током
- •11.2.2. Мероприятия по защите от поражения электрическим током
- •11.2.3. Токи замыкания на землю в сетях различных систем
- •11.2.4. Сопротивление заземляющего устройства
- •11.2.5. Напряжение шага, напряжение прикосновения
- •Р ис. 11.8. Кривые растекания тока I, напряжения прикосновения II, напряжение шага Uш
- •11.2.6. Выравнивание потенциалов
- •11.3. Устройство заземлений
- •11.3.1. Оборудование, подлежащее заземлению
- •11.3.2. Связь между заземлениями разных напряжений
- •11.3.3. Связь между заземлениями разных назначений
- •11.4. Зануление
- •11.4.1. Механизм действия зануления. Требования ко времени отключения при пробое изоляции на корпус
- •Наибольшее допустимое время защитного автоматического отключения для системы tn
- •11.4.2. Сопротивление петли фаза-нуль
- •11.4.3. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземлённой нейтралью
- •11.4.4. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью
- •11.4.5. Заземления в установках с изолированной нейтралью напряжением до 1 кВ
- •11.4.6. Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземлённой нейтралью
- •Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле
- •Наименьшие сечения защитных проводников
- •11.5. Заземлители
- •11.5.1. Удельное сопротивление грунта
- •11.5.2. Естественные заземлители
- •11.5.3. Искусственные заземлители
- •11.5.4. Явления экранирования
- •11.5.5. Заземляющая система тросы – опоры
- •11.6. Прокладка заземляющих проводников, их соединения и присоединения
- •Минимальные размеры заземляющих стальных проводников и элементов заземлителей
- •12. Компенсация реактивной мощности
- •Предельные значения крм в часы наибольших нагрузок
- •12.1. Конденсаторные установки
- •12.1.1. Синхронные двигатели
- •12.1.2. Пассивные фильтры
- •12.1.3. Активные фильтры
- •12.1.4. Статические тиристорные компенсаторы
- •12.1.5. Компенсаторы реактивной мощности статком
- •12.2. Условности при использовании понятий кажущейся и реактивной мощностей
- •12.3. Потери, вызываемые передачей реактивной мощности
- •12.4. Потребители и источники рм
- •12.5. Сущность крм
- •12.6. Технические эффекты крм
- •12.7. Места установки конденсаторов
- •12.8. Возможности многофункционального использования трехфазных несимметричных кб
- •13. Рациональное использование электрической энергии
- •13.1. Показатели и нормы качества электроэнергии
- •13.2.Влияние сечения нулевого провода на потери активной мощности и уравновешивание токов нулевой последовательности
- •13.3. Оптимизация режимов электропотребления
- •13.3.1. Потери электроэнергии при раздельной и параллельной работе радиальных линий
- •13.3.2. О равномерном графике электропотребления
- •13.3.3. Типы моделей графиков мощности в узлах сети и погрешности моделирования
- •13.4. Основные характеристики индивидуальных и групповых графиков нагрузки пээ
- •13.4.1. Показатели индивидуальных графиков нагрузки пээ
- •13.4.2. Показатели групповых графиков нагрузки
- •13.4.3. Технологические графики нагрузки
- •13.5. Основные положения теории выравнивания групповых графиков нагрузки
- •13.6. Примеры расчётов показателей индивидуальных и групповых графиков нагрузок
- •Графики активной мощности:
2.3. Способы выполнения контактных соединений и области их применения
Для выполнения контактных соединений токоведущих частей электроустановок применяют различные технологические способы: электросварку контактным разогревом и угольным электродом, газоэлектрическую, газовую, термитную, контактную стыковую сварку, холодную сварку давлением, пайку, прессовку, скрутку, стягивание (болтами, винтами) и т.п.
Электросварку проводников контактным разогревом применяют для оконцевания, соединения и ответвления алюминиевых проводов сечением до 1000 мм2, а также для соединения алюминиевых жил с медными. Сварку контактным разогревом с использованием присадочных материалов применяют для соединения и оконцевания алюминиевых многопроволочных жил проводов и кабелей сечением до 2000 мм2, электросварку угольным электродом – для соединения алюминиевых шин различных сечений и конфигураций, газоэлектрическую сварку – в основном для соединения алюминиевых и медных жил. Достоинство последней состоит в том, что ее выполняют без флюсов, однако требуется применение относительно громоздкого оборудования и использование дорогого газа. Поэтому газоэлектрическую сварку применяют для контактного соединения шин из алюминиевых сплавов типа АД31 и медных шин. Газовая сварка предназначается для соединения медных и алюминиевых проводов различных сечений и конфигураций; для ее выполнения необходимо громоздкое оборудование и соблюдение особых правил техники безопасности при работе с газами.
Термитной [5] сваркой можно соединять стальные, медные и алюминиевые провода и шины практически всех сечений; однако наиболее целесообразно ее применение для контактных соединений неизолированных проводов линий электропередач в полевых условиях. Для термитной сварки используют простое оборудование; для ее выполнения не требуется расхода электроэнергии; необходимо также создание специальных условий для хранения термитных патронов и спичек. Термитно-тигельную сварку используют при соединении стальных полос контуров заземления и грозозащитных тросов.
Контактная стыковая сварка применяется при соединении алюминиевых шин с медными (медно-алюминиевые переходные пластины и медно-алюминиевые наконечники).
Холодная сварка давлением служит при соединении алюминиевых и медных шин средних сечений и однопроволочных проводов сечением до 10 мм2, для ее выполнения не требуется дополнительных материалов и контактной арматуры.
Пайкой выполняют соединения как алюминиевых, так и медных проводов любого сечения; этот способ не нуждается в сложном оборудовании, но трудоемок.
Опрессовка предназначена для контактных соединений алюминиевых, сталеалюминевых и медных изолированных и неизолированных проводов сечением до 1000 мм2. Соединения опрессовкой не создают тепловых воздействий на изоляцию, но при оконцевании и соединении проводников особенно тщательно необходимо подбирать наконечники, гильзы, а также инструменты (пуансоны и матрицы). Этот способ применяется, как в кабельных, так и на воздушных линиях [5, 14, 33].
Скручивание проводов используется на линиях связи, и с помощью соединителей соединяют провода воздушных линий электропередачи (ВЛ).
Применение того или иного способа контактного соединения зависит от материалов соединяемых проводников, их сечения и формы, напряжения электроустановки, условий монтажа (наличие механизмов, приспособлений, материалов, электроэнергии и т.п.), а также требований эксплуатации.
Провода воздушных линий до 1 кВ соединяют в пролетах скручиванием в овальных трубках; однопроволочные провода допускается соединять скручиванием с последующей пайкой или сваркой внахлестку (соединение однопроволочных проводов сваркой встык не допускается). Провода в петлях анкерных опор соединяют анкерными и ответвительными клиновыми зажимами, скручиванием в овальных трубках, плашечными или аппаратными прессуемыми зажимами, сваркой.
Ответвления проводов ВЛ должны быть выполнены прессуемыми или плашечными зажимами.
Способы соединения проводов BJI выше 1 кВ зависят от их сечения. В пролетах алюминиевые провода сечением до 95 мм2, сталеалюминиевые сечением до 185 мм2 и стальные сечением до 50 мм2 соединяют скручиванием с помощью овальных соединений; алюминиевые провода сечением 120 – 185 мм2 и стальные сечением 70 – 95 мм2 – опрессовкой с помощью овальных соединителей с дополнительной термитной сваркой концов; алюминиевые и сталеалюминевые провода сечением 240 мм2 и более – с помощью соединительных прессуемых зажимов. В петлях анкерных и угловых опор сталеалюминиевые провода сечением до 240 мм2 и алюминиевые сечением до 95 мм2 соединяются термитной сваркой; сталеалюминиевые провода сечением 300 мм2 и выше – прессуемыми соединительными зажимами; провода разных марок – аппаратными прессуемыми зажимами.
Использование способа контактного соединения зависит от материалов соединяемых проводников, сечения, формы и напряжения электроустановки, условий монтажа. Воздушные линии (провода) до 1 кВ в пролетах соединяют скручиванием в овальных трубках, однопроволочные провода допускается соединять скручиванием с последующей пайкой или сваркой внахлестку (сварка встык однопроволочных проводов не допускается). В петлях анкерных опор провода соединяют анкерными и ответвительными клиновыми зажимами, скручиванием в овальных трубках, плашечными или аппаратными прессуемыми зажимами и сваркой.
Подготовку проводников к контактному соединению проводят в зависимости от способа выполнения соединения. Для того чтобы обеспечить металлический контакт между соединяемыми проводниками, их контактные поверхности предварительно очищают от всякого рода пленок, применяя при этом смывание, химическое растворение пленок и механическую очистку; часто эти способы используют совместно. Эффективна механическая очистка в сочетании со смыванием или растворением. Способы очистки поверхностей выбирают в зависимости от материалов контактных элементов, наличия на них защитных металлических покрытий, вида пленок и способа выполнения контактного соединения.
Правильное и качественное выполнение операций по соединению, ответвлению и оконцеванию жил проводов и кабелей определяет надежность эксплуатации внутренней и наружной электропроводок. Эти элементы проводок должны обладать необходимой механической прочностью и малым электрическим сопротивлением, сохраняя эти свойства на все время эксплуатации.
Для устройства электропроводки используются провода и кабели с алюминиевыми и медными жилами. По экономическим соображениям электропроводка, как правило, выполняется проводами и кабелями с алюминиевыми жилами. Однако алюминий имеет свойства, которые мало способствуют надежности соединения. Одно из них – повышенная (по сравнению с медью) текучесть и окисляемость с образованием токонепроводящих пленок. Окись алюминия создает большое переходное сопротивление, приводящее к ухудшению электрического контакта и чрезмерному его нагреванию. Окисная пленка создает трудности при пайке и сварке проводов, так как она имеет температуру плавления 2050 °С, температура же плавления самого алюминия составляет только 660 °С.
В процессе эксплуатации винтовые и болтовые сжимы соединений алюминиевых и медных проводов требуют контроля и периодического подтягивания.
Конструкция зажима для соединения алюминиевых жил должна обеспечивать следующие свойства:
- постоянство давления на провода при появлении их текучести;
- устройство, предохраняющее провода от растекания из-под контактного винта;
- гальваническое покрытие деталей.
Этим требованиям отвечает зажим, специально разработанный для соединения алюминиевых жил (рис. 2.1). Пружинная шайба зажима обеспечивает постоянство давления на присоединяемые провода, а упор предохраняет выдавливание провода из-под контактного зажима. В некоторых конструкциях пружинная шайба и упор, ограничивающий растекание, выполняются в виде одной шайбы-звездочки. Собирать зажим необходимо со всеми деталями, так как отсутствие любой из них обязательно приведет к ухудшению контакта.
Рис. 2.1. Зажим для присоединения алюминиевых проводов
1 – винт; 2 – пружинная шайба; 3 – шайба или основание контактного зажима; 4 – токоведущая жила; 5 – упор, ограничивающий растекание алюминиевого проводника.
Многопроволочную медную токоведущую жилу сечением 1,0 – 2,5 мм2 в некоторых видах соединений оконцовывают в виде стержня с полудкой припоем ПОС-40.
Контактные зажимы штепсельных розеток до 10 А и выключателей от 4 А и выше допускают присоединения медных и алюминиевых проводов сечением от 1 до 2,5 мм2, а для выключателей 1 А – только медных жил проводов сечением от 0,5 до 1 мм2. Присоединение алюминиевых проводов в зажиме обязательно выполняется с оконцеванием в виде колечка, медных – в виде колечка и стержнем (рис. 2.2). Колечко алюминиевого провода перед вводом в контакт зачищают и смазывают кварцевазелиновой или цинковазелиновой пастой. В штепсельных розетках до 10 А к одному контакту можно присоединить не более двух медных или алюминиевых проводов сечением до 4 мм2.
Рис. 2.2. Оконцевание проводов
Широкое распространение получил способ соединения и оконцевания алюминиевых и медных проводов и кабелей опрессовкой, которая обеспечивает надежный электрический контакт и необходимую механическую прочность, кроме того, проста в исполнении. Опрессовку выполняют ручными клещами, механическими и гидравлическими прессами с помощью сменных матриц и пуансонов. Для соединения жил проводов и кабелей служат гильзы (рис. 2.3), для оконцевания – наконечники.
Пайкой и сваркой соединяют и ответвляют провода в тех случаях, когда нельзя применить все остальные – опрессовку, винтовые сжимы и сварку. Пайка создает хороший электрический контакт, но это соединение непрочное, поэтому провода перед пайкой надо скручивать. Соединение и ответвление медных жил сечением до 6 мм2 выполняется пропаянной скруткой. Скрутка с последующей пропайкой является способом соединения и ответвления однопроволочных медных и многопроволочных проводов марок ПP, ПВ, ПРВД, ПРД сечением 1,5 – 6 мм2 в открытых электропроводках на роликах и изоляторах (рис. 2.4.) Этот способ соединения и ответвления применяют также в электропроводках, выполняемых плоскими проводами ППВ и другими, когда ответвительные коробки не имеют вкладышей с контактными зажимами, а также в некоторых других случаях.
а) б)
Рис.2.3. Опрессовка алюминиевых проводов гильзами ГАО:
а – односторонняя; б – двухсторонняя опрессовки
Прост по исполнению способ соединения проводов скруткой, но он требует последующей пропайки соединения, так как даже качественно выполненная скрутка имеет переходное контактное сопротивление, которое в несколько раз выше, чем при других способах соединения – опрессовке, пайке, сварке, болтовом или винтовом соединении. При скрутке провода имеют мало контактных точек, и при протекании через соединение тока контакт может перегреваться, что иногда бывает причиной пожара. По этой причине соединение скруткой без пропайки не допускается.
При пайке однопроволочных алюминиевых жил сечением 2,5 – 10 мм2 соединение и ответвление производят в виде двойной скрутки с желобком. С жил снимают изоляцию, зачищают до металлического блеска наждачной бумагой или кордовой лентой, соединяют внахлестку двойной скруткой с образованием желобка в месте касания жил (рис. 2.5).
Рис. 2.4. Соединение и ответвление медных проводов марок ПВ, ПР, ПРД, ПРВД
Рис. 2.5. Соединение однопроволочных алюминиевых проводов двойной скруткой с желобком
Сварка применяется для оконцевания и соединения токоведущих жил проводов и кабелей всех сечений и для алюминиевых жил с медными при сечении жил не более 10 мм2. Этот способ соединения требует применения специальных флюсов, сварочных аппаратов и другого специального оборудования.
