- •Технологический факультет
- •Учебно-методический комплекс
- •Глоссарий
- •2. Конспект лекционных занятий
- •Модуль 2. Cистемы автоматического контроля химико-технологических процессов лекция №2 методы и средства контроля технологических величин. Элементы метрологии и техники измерения.
- •Лекция №3 функциональная структура измерительной системы. Основные требования к измерительным приборам. Методы измерения. Понятие о точности измерительных приборов, основные виды погрешностей.
- •Лекция №8 измерение уровня. Уровнемеры для жидких и сыпучих веществ классификация приборов. Гидростатические уровнемеры. Поплавковые уровнемеры. Электрические уровнемеры. Радиоактивные уровнемеры.
- •Модуль 3 – измерительные преобразователи температуры, давления, уровня и расхода. Лекция №9 измерительные преобразователи пневматические. Измерительные преобразователи электрические.
- •3. Практические занятия Практика №1 вторичные приборы, работающие с пневматическими регулирующими блоками и регулирующие устройства
- •1. Устройство, принцип работы пневматических показывающих самопишущих приборов. Типы приборов.
- •2. Схема и описание измерительного устройства приборов.
- •Практика №2 вторичные приборы электрических систем дистанционных измерений
- •1. Устройство, принцип работы показывающих и самопишущих приборов.
- •1.1 Устройство, принцип работы автоматического потенциометра ксп-4. Типы автоматических потенциометров.
- •1.2 Автоматический мост ксм-4. Типы автоматических мостов.
- •1.3 Автоматический дифференциально-трансформаторный прибор ксд-3.
- •2. Аналоговые показывающие и регистрирующие приборы. Типы аналоговых одношкальных, многошкальных, одноканальных и многоканальных приборов.
- •1. Описание установки и методика проведения работы
- •Смеси хроматографом
- •2. Порядок выполнения работы
- •1. Измерение физических свойств веществ и примесей
- •1.1 Измерение плотности
- •1.2 Измерение вязкости
- •1.3. Анализаторы содержания воды в нефти
- •1.4 Анализаторы содержания солей в нефти
- •2. Контрольные вопросы
- •Литература
- •Практика №5 принципы составления схем автоматизации. Графические оформления функциональных схем автоматизации.
- •1. Условные обозначения средств автоматизации по функциональному признаку приборов и устройств.
- •2. Функциональные схемы автоматизации
- •1. Изображение на схемах аппаратов, трубопроводов, автоматических устройств и линии связи между ними.
- •2. Автоматизация основных процессов переработки нефти.
- •2.1 Автоматизация трубчатых печей.
- •2.2 Автоматизация ректификационных установок.
- •2.3 Автоматизация реакторов.
- •Литература
- •Практика №7 типовые схемы автоматического контроля и регулирования температуры, давления. Составление спецификации на средства контроля и регулирования.
- •1. Схемы автоматического контроля и регулирования.
- •2. Примеры изображения функциональных схем контроля технологических параметров: температуры и давления.
- •3. Примеры изображения функциональных схем регулирования технологических параметров: температуры и давления.
- •4. Спецификация на средства контроля и регулирования
- •Литература
- •Практика №8 типовые схемы автоматического контроля и регулирования уровня и расхода. Составление спецификации на средства контроля и регулирования.
- •1. Примеры изображения функциональных схем контроля технологических параметров: уровня и расхода.
- •2. Примеры изображения функциональных схем регулирования технологических параметров: уровня и расхода.
- •3. Спецификация на средства контроля и регулирования
- •Практика № 9 регулирующие, функциональные и исполнительные устройства
- •1. Регулирующие устройства (регуляторы)
- •2. Функциональные устройства
- •3. Исполнительные устройства
- •4. Пневматические устройства
- •5. Электрические устройства
- •6. Программируемые микропроцессорные контроллеры
- •7. Исполнительные устройства
- •Литература
- •4 Лабораторные занятия
- •Контрольные вопросы
- •5 Самостоятельная работа студентов под руководством преподавателя (срсп) задания на курсовую работу
- •Вариант 9
- •6 Самостоятельная работа студентов (срс) Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Вариант № 11
- •Вариант № 12
- •Вариант № 13
- •Вариант № 14
- •Вариант № 15
- •Вариант № 16
- •Вариант № 17
- •Вариант № 18
- •Вариант № 19
- •Вариант № 20
- •7 Экзаменационные вопросы
- •Лабораторное оборудование, имеющееся на кафедре
- •8. Список литературы Основная
- •Дополнительная
Модуль 2. Cистемы автоматического контроля химико-технологических процессов лекция №2 методы и средства контроля технологических величин. Элементы метрологии и техники измерения.
Автоматизация базируется на различных технических средствах.
При создании измерительных устройств, регуляторов и др. средств автоматизации предусматривается их стандартизация в рамках Государственной системы приборов и средств автоматизации (ГСП).
Разрабатываемые в рамках ГСП технические средства могут использоваться в виде локальных систем контроля, регулирования, сигнализации, защиты и др., а также на нижнем уровне автоматизированных систем управления технологическими процессами (АСУ ТП). Основной технической базой современных АСУ ТП является ГСП, выполненная в виде совокупности изделий, предназначенных для получения, обработки и использования информации.
Изделия ГСП строятся на основе базовых конструкций с унифицированными структурами, сигналами, источниками питания, конструктивными параметрами, Это позволяет иметь общую технологическую базу для производства изделий, обеспечивает их взаимозаменяемость, высокую точность, надежность и долговечность.
В ГСП стандартизированы параметры входных и выходных сигналов источников энергии, элементы, блоки и модули приборов и устройств, их присоединительные, габаритные и монтажные размеры. В нормализованный ряд приборов и средств автоматизации входят первичные преобразователи и измерительные приборы; преобразователи для получения нормированных сигналов; регуляторы; вычислительные, функциональные и логические блоки, запоминающие устройства; вторичные приборы; цифропечатающие устройства; исполнительные устройства.
По роду энергии, используемой для передачи информации и команд управления, в ГСП имеются три ветви:
1) электрическая – устройства которой обладают высокой точностью, быстродействием обеспечивают большую дальность и емкость каналов передачи информации;
2) пневматическая – устройства которой характеризуются безопас-ностью работы в легковоспламеняющихся и взрывоопасных средах; высокой надежностью в тяжелых условиях работы;
3) гидравлическая – устройства которой обеспечивают точные перемещения исполнительных органов и большие перестановочные усилия.
В ГСП входят такие устройства, работающие без использования вспомогательной энергии – приборы и регуляторы прямого действия. Это устройства, использующие для выполнения своих функций энергию той среды, параметры которой они измеряют и регулируют.
По функциональному признаку технические средства в ГСП подразделяются на следующие группы:
1) средства получения информации о состоянии объекта управления. К ним относятся первичные измерительные преобразователи (датчики), измерительные приборы и преобразователи, которые вместе с нормирующими устройствами, формирующими унифицированный сигнал, образуют устройства для получения измерительной информации, а также устройства формирования алфавитно-цифровой информации. Устройства этой группы предназначены для преобразования измеряемой физической величины в удобный для восприятия, передачи и обработки сигнал измерительной информации;
2) средства приема, преобразования и передачи информации. К этой группе относятся различные преобразователи сигналов и кодов, коммутаторы измерительных цепей, шифраторы и дешифраторы, согласовательные устройства, а также устройства для дистанционной передачи, телеизмерения и телеуправления. Технические средства этой группы используются для приема, преобразования и передачи сигналов, содержащих измерительную информацию и несущих команды управления;
3) средства обработки информации, формирования команд управления, представления информации оператором. В эту группу, называемую центральной частью ГСП, входят; функциональные и операционные преобразователи, логические устройства, анализаторы сигналов, запоминающие устройства, регуляторы, датчики, управляющие вычислительные устройства;
4) средства использования командной информации для воздействия на объект управления. Это исполнительные устройства, исполнительные механизмы, усилители мощности и вспомогательные устройства к ним, регулирующие органы.
Устройства первой и четвертой групп непосредственно взаимодействуют с объектом управления.
В системах автоматического управления для измерения (регистрации) текущих значений величин химико-технологических процессов используются разные измерительные устройства (измерительные приборы и измерительные преобразователи).
Измерение – нахождение значения физической величины опытным путем с использованием специальных технических средств.
Метрология – специальная наука, занимающаяся вопросами теории измерений, средствами обеспечения их единства и способов достижения необходимой точности.
В метрологии различают прямые, косвенные, совокупные и совместные измерения.
Все измерения осуществляют с помощью мер и измерительных приборов.
Средствами измерений называют технические средства, используемые при измерениях и имеющие нормированные метрологические свойства.
Мерами называют средства измерений, предназначенные для воспроизведения физической величины заданного размера. Например, мерой массы служит гиря, мерой электрического сопротивления – измерительный резистор, мерой частоты электрических колебаний – кварцевый генератор. Мера, воспроизводящая физическую величину лишь одного размера, называется однозначной (например, гиря, концевые меры длины, измерительный сосуд). Меры, воспроизводящие ряд одноименных величин различного размера, называют многозначными (например, линейка с нанесенными делениями, конденсатор переменной емкости).
Средство измерения, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем, называют измерительным прибором. Средство измерения, вырабатывающее сигнал в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не позволяющее наблюдателю непосредственно воспринимать этот сигнал, называют измерительным преобразователем. Различают первичный измерительный преобразователь (к которому подведена измеряющая величина, т.е. первый в измерительной цепи) и передающий измерительный преобразователь (предназначен для дистанционной передачи сигнала измерительной информации).
По форме выхода все измерительные устройства делятся на аналоговые и цифровые. В аналоговых измерительных устройствах выходом является непрерывная по значению выходная величина, обычно это перемещение указателя по шкале прибора или пера по диаграммной бумаге регистрирующего устройства. В цифровых измерительных устройствах измерительная величина представляется в дискретной форме как окончательный результат измерения, выраженный числом или кодом. Они обладают высокой точностью, чувствительностью, быстродействием, не имеют погрешностей, связанных с субъективным отсчетом показаний, имеют кодированный выход, удобный для использования в измерительно-информационных системах и вычислительной технике.
