- •Технологический факультет
- •Учебно-методический комплекс
- •Глоссарий
- •2. Конспект лекционных занятий
- •Модуль 2. Cистемы автоматического контроля химико-технологических процессов лекция №2 методы и средства контроля технологических величин. Элементы метрологии и техники измерения.
- •Лекция №3 функциональная структура измерительной системы. Основные требования к измерительным приборам. Методы измерения. Понятие о точности измерительных приборов, основные виды погрешностей.
- •Лекция №8 измерение уровня. Уровнемеры для жидких и сыпучих веществ классификация приборов. Гидростатические уровнемеры. Поплавковые уровнемеры. Электрические уровнемеры. Радиоактивные уровнемеры.
- •Модуль 3 – измерительные преобразователи температуры, давления, уровня и расхода. Лекция №9 измерительные преобразователи пневматические. Измерительные преобразователи электрические.
- •3. Практические занятия Практика №1 вторичные приборы, работающие с пневматическими регулирующими блоками и регулирующие устройства
- •1. Устройство, принцип работы пневматических показывающих самопишущих приборов. Типы приборов.
- •2. Схема и описание измерительного устройства приборов.
- •Практика №2 вторичные приборы электрических систем дистанционных измерений
- •1. Устройство, принцип работы показывающих и самопишущих приборов.
- •1.1 Устройство, принцип работы автоматического потенциометра ксп-4. Типы автоматических потенциометров.
- •1.2 Автоматический мост ксм-4. Типы автоматических мостов.
- •1.3 Автоматический дифференциально-трансформаторный прибор ксд-3.
- •2. Аналоговые показывающие и регистрирующие приборы. Типы аналоговых одношкальных, многошкальных, одноканальных и многоканальных приборов.
- •1. Описание установки и методика проведения работы
- •Смеси хроматографом
- •2. Порядок выполнения работы
- •1. Измерение физических свойств веществ и примесей
- •1.1 Измерение плотности
- •1.2 Измерение вязкости
- •1.3. Анализаторы содержания воды в нефти
- •1.4 Анализаторы содержания солей в нефти
- •2. Контрольные вопросы
- •Литература
- •Практика №5 принципы составления схем автоматизации. Графические оформления функциональных схем автоматизации.
- •1. Условные обозначения средств автоматизации по функциональному признаку приборов и устройств.
- •2. Функциональные схемы автоматизации
- •1. Изображение на схемах аппаратов, трубопроводов, автоматических устройств и линии связи между ними.
- •2. Автоматизация основных процессов переработки нефти.
- •2.1 Автоматизация трубчатых печей.
- •2.2 Автоматизация ректификационных установок.
- •2.3 Автоматизация реакторов.
- •Литература
- •Практика №7 типовые схемы автоматического контроля и регулирования температуры, давления. Составление спецификации на средства контроля и регулирования.
- •1. Схемы автоматического контроля и регулирования.
- •2. Примеры изображения функциональных схем контроля технологических параметров: температуры и давления.
- •3. Примеры изображения функциональных схем регулирования технологических параметров: температуры и давления.
- •4. Спецификация на средства контроля и регулирования
- •Литература
- •Практика №8 типовые схемы автоматического контроля и регулирования уровня и расхода. Составление спецификации на средства контроля и регулирования.
- •1. Примеры изображения функциональных схем контроля технологических параметров: уровня и расхода.
- •2. Примеры изображения функциональных схем регулирования технологических параметров: уровня и расхода.
- •3. Спецификация на средства контроля и регулирования
- •Практика № 9 регулирующие, функциональные и исполнительные устройства
- •1. Регулирующие устройства (регуляторы)
- •2. Функциональные устройства
- •3. Исполнительные устройства
- •4. Пневматические устройства
- •5. Электрические устройства
- •6. Программируемые микропроцессорные контроллеры
- •7. Исполнительные устройства
- •Литература
- •4 Лабораторные занятия
- •Контрольные вопросы
- •5 Самостоятельная работа студентов под руководством преподавателя (срсп) задания на курсовую работу
- •Вариант 9
- •6 Самостоятельная работа студентов (срс) Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Вариант № 11
- •Вариант № 12
- •Вариант № 13
- •Вариант № 14
- •Вариант № 15
- •Вариант № 16
- •Вариант № 17
- •Вариант № 18
- •Вариант № 19
- •Вариант № 20
- •7 Экзаменационные вопросы
- •Лабораторное оборудование, имеющееся на кафедре
- •8. Список литературы Основная
- •Дополнительная
1.3 Автоматический дифференциально-трансформаторный прибор ксд-3.
Автоматический дифференциально-трансформаторный прибор КСД-3 предназначен для непрерывного измерения записи и регулирования различных величин (уровня жидкости, давления, расхода жидкости, пара или газа и др.), изменение которых можно превратить в перемещение плунжера (сердечника) дифференциально-трансформаторной матерной катушки датчика.
Принципиальная схема прибора КСД-3 с катушкой датчика приведена на рис. 4 . В первичном приборе, в комплекте с которым работает прибор КСД-3, датчиком дистанционной передачи является дифференциально-трансформаторная катушка, с подвижным сердечником П. В прибор КСД-3 встроена дифференциально-трансформаторная катушка 6, сердечник 5 которой также может перемещаться. Катушки 7 и 6 имеют первичную и вторичную обмотки. Первичные обмотки обеих катушек соединены между собой последовательно и питаются от специальной обмотки силового трансформатора. Вторичные обмотки катушек 1 и 6 состоят каждая из двух секций, включенных навстречу одна другой, поэтому индуктируемые в них ЭДС противоположны по знаку. При подаче напряжения непременного тока на первичные обмотки катушек 1 и 6 в их вторичных обмотках индуктируются ЭДС, величины которых в каждой секции зависят от положений сердечников 11 и 5. При среднем положении сердечников в дифференциально-трансформаторных катушках 7 и 6 ЭДС, наводимые в секциях их вторичных обмоток, равны и взаимно компенсируются. Изменение измеряемого параметра вызывает перемещение сердечника lie дифференциально-трансформаторной катушке датчика, который приходит в рассогласование с сердечником 5 катушки 6 прибора КСД-3. При этом между точками А и Б возникает напряжение небаланса, величина и фаза которого зависят от величины и направления смешения сердечника lie катушке датчика.
Напряжение небаланса подается на электронный усилитель 10 для усиления по величине и
мощности, а затем подводится к управляющей обмотке реверсивного двигателя 9 и ротор начинает вращаться. Выходной вал реверсивного двигателя, связанный с кулачком 7 через систему рычагов тяг, перемещает сердечник 5 катушки 6 в положение, согласованное с сердечником в катушке 1. В этот момент ЭДС находимые во вторичных обмотках обеих катушек, становятся равными, и наступает новое состояние равновесия. Разность потенциалов в точках А и В обращается в нуль и ротор двигателя перестает вращаться. При вращении вала реверсивного двигателя одновременно перемещаются связанные с ним стрелка прибора, записывающее перо и элементы регулятора.
Для проверки исправности прибора предусмотрена контрольная кнопка 2, при нажатии которой на вход усилителя подается напряжение только от дифференциально-трансформаторной катушки 6 вторичного прибора, и ее сердечник устанавливается в среднее положение, чему соответствует расположение стрелки прибора против контрольной отметки.
В прибор могут встраиваться различные задающие и регулирующие устройства, а также выходные преобразователи ГСП.
Конструктивно прибор КСД-3 выполнен в виде стального корпуса размером 320x320x380 мм с застекленной крышкой, внутри которого, размещены основные узлы. Показания записываются на дисковой диаграммной ленте.
Быстродействие прибора 5, 16 с; время одного оборота диаграммы 24 ч. Основная погрешность показаний 1 %, записи ±1,6%. Шкала прибора градуируется в единицах величины, измеряемой им в комплекте с соответствующим датчиком.
