- •Қысқартылған сөздер тізімі
- •Химиялық лабораторияларда жұмыс істеу ережелері
- •Реактивтерді пайдалану ережелері
- •Лабораторияда жұмыс істегенде қолданылатын сақтық шаралары
- •1.1 Термодинамиканың жанды жүйелердегі негізгі заңдылықтары
- •Термодинамикалық заңдылықтарды жанды ағзаларда қолдану
- •Термодинамиканың негізгі бастамалары және заңдары
- •1.1.2 Термодинамиканың бірінші заңы
- •1.1.3 Термодинамиканың екінші заңы
- •1.1.4 Гиббс энергиясы. Гельмгольц энергиясы
- •1.1.5 Термодинамиканың үшінші заңы
- •1.2 Химиялық кинетика
- •1.2.1 Химиялық реакция жылдамдығына әрекеттесуін заттардың табиғатының әсер етуі
- •Реакция жылдамдығына катализатордың (өршіткінің) әсері
- •1.2.2 Химиялық реакциялардың кинетикалық жіктелуі
- •1.2.3 Ферменттер және олардың құрылысы туралы жалпы түсінік
- •1.3 Ерітінділер туралы ілім
- •1.4 Буферлік жүйелер мен ерітінділер туралы түсініктер, олардың құрамы және жіктелуі
- •1.4.1 Буферлiк жүйелердiң рН–ына әсер ететiн факторлар
- •1.4.2 Организмнің буферлiк жүйелерi. Бикарбонаттық және фосфаттық буферлiк ерiтiндiлердiң әсер ету механизмi
- •1.4.3 Буферлiк сиымдылық – буферлiк әсердiң өлшемi
- •1.5 Комплексті қосылыстар
- •Кейбір кең қолданылатын лигандтар
- •1.6 Тотығу-тотықсыздану реакциялары
- •1.6.1 Тотығу-тотықсыздану реакцияларын құрастыру және
- •1.7 Жоғарғы молекулалық қосылыстар
- •1.7.1 Жмқ туралы жалпы түсініктер, олардың жіктелуі және жалпы қасиеттері
- •1.7.2 Белоктардың ерітінділері - полиэлектролиттер және полиамфолиттер
- •1.7.5 Тұтқырлықтың биологиялық маңызы
- •(Онкотикалық) қысымы
- •1.7.7 Жмқ ерітінділерінің тұрақтылығының жойылуы. Тұздану механизмі
- •2.1 Cпирттер
- •2.1.1 Қаныққан бip атомды спирттер
- •2.1.2 Қанықпаған бір атомды спирттер
- •2.1.3 Екі атомды спирттер (гликольдер)
- •Үш атомды спирттер. Глицерин
- •2.2 Фенолдар және ароматты спирттер
- •2.2.1 Екі атомды фенолдар
- •2.2.2 Үш атомды фенолдар
- •2.2.3 Ароматты спирттер
- •2.3 Оксоқосылыстар
- •2.3.1 Оксотоптың құрылысы
- •Оксоқосылыстардың нуклеофильдік қосып алу реакциялары
- •Ацетальдегид ацетальдегидтің гидраты
- •2.4 Гетерофункционалдық қосылыстар
- •Аминді спирттер
- •Серин Коламин Холин
- •Гидроксиқышқылдар
- •Оксоқышқылдар
- •2.5 Аминқышқылдар. Ақуыздар
- •2.5.1 Ақуыздардың химиялық құрылысы
- •2.5.2 Ақуыздардың кеңістіктегі орналасуы
- •Ақуыздардың амфотерлігі
- •2.6 Көмірсулар
- •2.6.1 Олигосахаридтер (дисахаридтер)
- •2.6.2 Полисахаридтер
- •2.6.3 Көмірсулардың биологиялық ролі
- •2.7 Бір және екі гетероатомды бес мүшелі гетероциклдар
- •Дипиррилметан
- •Витамин в12 (цианкоболамин)
- •Фурацилин
- •Фуразолидон
- •2.7.1 Екі гетероатомды бес мүшелі гетероциклдар
- •Пиразолон – 5
- •2.7.2 Бір және екі гетероатомды алты мүшелі гетероциклдар
- •Урацил (2,4 – дигидроксипиримидин) тимин (2,4–дигидрокси–5–метилпиримидин)
- •Цитозин (4–амин–2–гидроксипиримидин)
- •Птеридин
- •2.8 Нуклеин қышқылдары
- •2.8.1 Рибонуклеозидтер
- •2.8.2 Дезоксирибонуклеозидтер
- •1, 2 Немесе 3 фосфор
- •Аденозин-3′–фосфат (3′-амф) немесе 3′–аденил қышқылы
- •(Уридинмонофосфат, уридин – 5′ – фосфат,
- •2.8.5 Полинуклеотидтер және полирибонуклеотидтер
- •2.9 Липидтер
- •2.9.1 Майлардың қорытылуы және сіңірілуі
- •2.9.2 Липидтер. Фосфоацилглицериндер
- •2.9.3 Қаныққан (шектелген) майлы қышқылдар сабындар
- •2.9.4 Қанықпаған (шектелмеген) майлы қышқылдар
- •2.9.5 Глицеролипидтер. Ацилглицериндер (жай және аралас)
- •2.9.6 Фосфоглицеролипидтер (фосфатид қышқылы, фосфатидилсерин, фосфатилэтаноламин, фосфатидилхолин)
- •2.9.8 Изопреноидтардың жалпы сипаттамасы (сабындалмайтын липидтер)
- •2.9.9 Холестерин (құрылысы)
- •Холестерин
- •2.9.10 Гликокортикоидтар және минералдық ортикоидтар
- •Эстрадиол
- •Тестостерон Тесттер
- •Жауаптары
- •Қолданылған әдебиеттер
1.5 Комплексті қосылыстар
Комплексті қосылыстар туралы ілімнің негізін жасаған Швейцария ғалымы Альфред Вернер (1893 жылы).
Комплексті қосылыспен танысу үшін мынадай мысал келтірейік. HF және SiF4 реакцияласқанда:
2HF + SiF4 → H2SiF6
кремний фторсутек қышқылы түзіледі. Мұндай химиялық қосылыстың түзілуін валентікке сай химиялық байланыстың түрлерімен түсіндіре алмаймыз, шынында HF мен SiF4 молекулаларының құрамындағы атомдардың валенттіктері қанық бұл молекулаларда химиялық байланыстың негізі — электрон жұбын түзетін не бұлттары тоғысып қаптасатын жалқы электрон жок. Солай бола тұрса да екі газ жап-жақсы реакцияласады, су ерітіндісінде eкeyi түгел қосылады.
Мұндағы қосылысудың ретін түзілген H2SiF6 қасиеттері көрсетеді, бұл екі негізді күшті қышқыл былай диссоциацияланады:
H2SiF6 ↔ 2Н+ + SiF62-
SiFe2- ионының түзілуі бейтарап молекула SiF4 фтор ионымен F- қосылысатындығын көрсетеді. Айталық, HF мен SiF4 арасындағы реакцияны көрнекті түрде былай жазуға болады:
2-
H+ F- F- F-
2HF + SiF4 = Si4+
H+ F- F- F-
Демек, SiF4 құрамындағы кремний HF құрамындағы F- ионын өзіне тартып алады. Осы арадағы тepic зарядты фтор иондары, әрине, кейін тебіседі, бipaқ, оң зарядты кремнийдің оларды өзіне тартуы басым болғандықтан, оң 4 зарядты бip кремний тepic зарядты алты фтормен бipiгiп, өткенде көрсеткендей комплекс түзеді, ол комплекс тepic 2 зарядты ион болып шығады. Комплекс иондары әдетте квадрат жақшаға алып жазылады.
Құрамында осындай комплекс ионы бар қосылыстар комплексті қосылыстарға жатады.
Координациялық теория бойынша комплексті қосылыста орталық орын алып тұрған ион, не атом (мысалымызда кремний) комплекс түзуші деп аталады. Мысалы, мына қосылыстар CuSО4· 4NH3 не PtCl4· 2KCl комплексті қосылыстар болады. Бұлардағы [Cu(NH3)4]SО4, K2[Pt(Cl)6] мыс жене платина иондары комплекс түзуші.
Комплекс түзушінің айналасына, соның әcepi жететіндей жақындатқанда жиналған, яғни координацияланған иондарды, не молекулаларды лигандтар (ligare - байланыстыру), аддендтер деп атайды. Міне, осылар (комплекс түзуші мен лигандтар) бірігіп, комплексті қосылыстардың ішкі сферасын құрайды. Ішкі сфераға араласпай қалған иондар комплекс түзушіден алысырақ орналасады, олар комплексті қосылыстың сыртқы сферасын құрайды. Комплексті қосылыстарды жазғанда олардың ішкі және сыртқы сфераларын айырып көрсету үшін ішкі сфераны жоғарыда айтқандай квадрат жақшаға алады. Мысалы,
[Pt(NH3)4Cl2], [NH4]C1, [Pt(NH3)2Cl2] т.б.
Комплексті қосылыстың құрамы белгілі болса, комплекс түзушінің зарядың табу қиын емес. Ол үшін комплексті қосылыстың формуласына кіретін басқа иондардың барлығының зарядтарының алгебралық қосындысын шығарып, оған тepic мән қояды, мысалы комплекс ион оң екі валентті, [Pt(NH3)4Cl2]Cl2 оның қосындысы (4·0)+(2-) + (2-)= (4-) демек, бұл арада комплекс түзуші платина оң төрт валентті.
Координациялық сан және комплексті қосылыстардың құрылымы. Бос орбитальдары бар атомдар немесе металл иондары әдетте комплекс түзушілер бола алады, яғни, лигандтармен байланыс құру кезінде комплекс түзушілер акцептордың функциясын атқарады.
Орталық атомның төңірегіне лигандтардың орналасуы әр түрлі, ол комплекс түзушінің лигандтардың қандай санын ұстап қалуына, яғни оның координациялық, санына (К.С.) байланысты. Әртүрлі комплекс түзушілерде координациялық сан 2-ден 10-ға дейін өзгереді, 4 жене 6 сандары жиі, 8 және 2 сандары сирек кездеседі. Координациялық саны 2 бip валентті күміс Ag (I), алтын Au (I) жене мыстың Cu (I) комплексті қосылыстары жиі кездеседі.
Комплекстегі қосылыстардың классификациясы және аталуы
Комплекстер ішкі сфераның зарядына қарай, катионды, анионды және бейтарап болып үш топқа бөлінеді.
Катионды комплекстер орталық ионның айналасына бейтарап молекулалар (Н2О, NH3 жене т.б.) координацияланғанда түзіледі. Мысалы, [А1(Н2О)6]С13 және [Cr(NH3)4]Cl3. Бұл қосылыстардағы комплексті [А1(Н2О)6]3+ және [Сr(NН3)4]3+ иондар оң зарядталған.
Анионды комплекстерде комплекс түзушінің ролін оң зарядталған ион, ал лигандтар ролін аниондар атқарады. Мысалы, K4[Fe(CN)6], K2[BeF4], [Na2(Zn(OH)4] жене т.б. K4Fe(CN)6]-тeгi комплексті анион Fe(CN)64- темір катионының Fe айналасына CN- аниондары координацияланғанда түзіледі.
Бейтарап комплекстер атомның айналасына молекулалар координацияланғанда (мысалы, [Ni(CO)4]) немесе оң зарядталған комплекс түзушінің айналасына анион мен молекулалар қатар координацияланғанда түзіледі (мысалы, [Pt(NH3)2Cl2]). Бейтарап комплекстердің сыртқы сферасы болмайды.
Комплекстердің аталуы.
Мысалы, екі комплексті қосылыстарды қарастырайық:
