
- •Предмет и задачи физиологии. Методы физиологических исследований. Потенциал покоя и потенциал действия
- •Предмет и задачи физиологии; общее, практическое и прикладное значение физиологии
- •2.Краткая характеристика развития физиологии
- •Методы физиологических исследований: аналитические и синтетические; их значение; острый и хронический эксперимент
- •4.Понятие о физиологических функциях, их параметры
- •Понятие о гомеостазе, его константы
- •Возбудимость, возбуждение, возбудимые ткани. Общие свойства возбудимых тканей
- •Электрические явления как основа возбуждения тканей
- •Мембранный потенциал покоя, механизм его происхождение, параметры, методика регистрации, физиологическая роль
- •10.Изменении мембранного потенциала под действием электрического тока как раздражителя. Локальный ответ. Уровень критической деполяризации (порог деполяризации) как мера возбудимости клетки
- •Потенциал действия (пд), методы регистрации, фазы, механизмы их происхождении, физиологическое значение
- •Изменения возбудимости клетки во время развития пд. Периоды рефрактерности, механизмы их происхождения, физиологическое значение
- •Действие постоянного тока на возбудимые ткани, использование его в клинической практике
- •Гальванизм, его симптомы. Гальванизация в стоматологии
- •2. Физиологические свойства нервных волокон
- •3.Параметры возбудимости нервных волокон (реобаза, полезное время, хронаксия, аккомодация, лабильность). Использование хронаксиметрии
- •4.Механизмпроведения возбуждения по нервным волокнам
- •5.Законы проведения возбуждения по нервным волокнам
- •3.Закон изолированного проведения возбуждения.
- •6.Закон «всё или ничего» для нервного волокна
- •7.Скорость проведения возбуждения, факторы, от которых она зависит
- •8.Классификация нервных волокон в зависимости от функции, диаметра и скорости проведения возбуждения
- •9.Потенциал действия смешанного нерва
- •10.Нервно-мышечный синапс, его строение
- •11.Механизм химической передачи возбуждения через нервно-мышечный синапс. Медиатор нервно-мышечной передачи в скелетной мышце
- •12.Потенциал концевой пластинки (пкп), его происхождение и значение
- •13.Физиологические механизмы нарушения нервно-мышечной передачи. Использование этих механизмов в клинике
- •14.Особенности передачи возбуждения в синапсах гладких мышц
- •15.Трофическая функция нейронов
- •16.Электроодонтометрия, её значение для диагностики заболеваний и лечения зубов
- •Физиологические особенности мышц. Механизмы мышечного сокращения
- •1.Физиологические особенности и функции скелетных мышц. Механизм сокращения и расслабления поперечно-полосатых мышц
- •2.Механизм сопряжения возбуждения и сокращения в поперечно-полосатых мышечных волокнах (электромеханическое сокращение).
- •3 .Нейромоторные (двигательные) единицы, их виды.
- •4.Виды сокращений мышц в зависимости от частоты раздражения. Одиночные, тетанические сокращения. Одиночные сокращения Мышцы, взаимосвязь между сокращением и возбуждением мышцы
- •5.Механизм тетануса в изолированной мышце. Оптимум и пессимум частоты раздражения. Механизм тетануса в целом организме
- •6.Изометрическое сокращение, зависимость между длиной мышечного волокна и его напряжением
- •7.Изотоническое сокращение, зависимость между скоростью сокращения мышцы и её нагрузкой
- •8.Сила и работа мышц. Зависимость работы мышц от нагрузки и ритма работы. Использование в практике
- •9.Утомление мышц, его механизмы
- •10.Динамометрия
- •11.Электромиография
- •12.Гладкие мышцы, их типы. Связь возбуждения и сокращения гладких мышц
- •13.Контрактура мышц, ее последствия
- •14. Гнатодинамометрия, её значение для клиники
2.Механизм сопряжения возбуждения и сокращения в поперечно-полосатых мышечных волокнах (электромеханическое сокращение).
Роль Са2+ - ионов.
Обычно мышца возбуждается при поступлении нервных импульсов от аксонов мотонейронов в пресинаптическую часть нервного волокна. Через 1-2 мс в мышечном волокне со скоростью примерно 2м/сек булл распространяться потенцией действия, а через 5-10 мс возникает сокращение этого волокна.
Передача команды к сокращению от возбужденной клеточной мембраны к миофибриллам в глубине мышечной клетки называемся электромеханическим сопряжением. Оно происходит в несколько этапов, с участием белков тропонииа и тропомиозина, а также ионов Са2+ и состоит из нескольких этапов:
Распространение возбуждения вглубь волокна. В этом процессе важную роль играют Nа+ - каналы поперечных трубочек (Т - трубки). С их помощью возбуждение быстро распространяется но мембране саркоплазматического ретикулума - систему продольных трубочек (т.н. «триады»), в которых депонирован Са2+. В мембране триад располагаются потенциал управляемые Са2+ - каналы, которые открываются при распространении деполяризации, называют потенциалом действия.
Са2+ - ионы поступают к миофибриллам. В состоянии покоя между поперечными мостиками миозина и актиновыми нитями находится длинный белок – тропомиозин. На актиновых же нитях через каждые 40 нм расположен белок сферической формы - тропонин. При поступлении ионов Са2+ тропонин приобретает округлую форму и «заталкивает» тропонин в желобок между актииовыми нитями. Открываются участки для прикрепления поперечных миозиновых мостиков к нитям актина. При помощиАТФ происходит процесс «гребка».
После окончания «гребка» с помощью кальциевого насоса ноны Са2+ удаляются в саркоплазматический ретикулум. При снижении концентрации Са2+ подавляется активность АТФ-азы миозина и количество АТФ в миофибриллах увеличивается.
АТФ: даёт энергию для разъединения нитей актина и миозина после «гребка» - мышца расслабляется.
Недостатком АТФ объясняется трудное окоченение – нити актина и миозина не разъединены.
Таким образом, ведунью роль в электромеханическом сопряжении играют ионы Са2+.
3 .Нейромоторные (двигательные) единицы, их виды.
Нейромоторная единица - это совокупность одного мотонейрона, аксона мотонейрона и его разветвлений, а также мышечных волокон, которые иннервируют данный аксон (рис. 15). В зависимости от количества иннервируемых волокон нейромоторные единицы делятся на две группы:
Малые нейронные единицы - один мотонейрон иннервирует несколько мышечных волокон. Иннервируется мышцы, требующие тонких и точных движений (мышцы глаза, гортани, пальцев рук).
Большие нейромоторные единицы - один мотонейрон иннервирует несколько сотен мышечных волокон (мышцы спины,голени).
Рис.15. Строение двигательной единицы.
В зависимости от характера сокращения нейромоторные единицы делятся на три группы:
Фазные моторные единицы - обеспечивают короткое и сильное сокращение.
Тонические моторные единицы - обеспечивают длительное, но менее сильное сокращение.
Переходные моторные единицы - длительность и сила сокращения промежуточные между тоническими и фазными.
В одной мышце, как правило, сдержатся все три типа нейромоторных единиц.