Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций Строительная информатика.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.16 Mб
Скачать

Глава 2. Инормационные системы и информационные технологии в строительстве

Лекция №2. Информационные системы в строительстве.

  • Понятие системы, управления, многоуровневый характер информационного обмена.

  • Информационный обмен в строительстве.

  • Средства автоматизации информационных процессов.

  • Понятие системы, управления, многоуровневый характер информационного обмена.

Под системой понимают любой объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность разнородных элементов. Системы значительно отличаются между собой как по составу, так и по главным целям. Добавление к понятию "система" слова "информационная" отражает цель ее создания и функционирования.

Термин информационнаясистема (ИС) используется как в широком, так и в узком смысле.

В широком смысле информационная система есть совокупность технического, программного и организационного обеспечения, а также персонала, предназначенная для того, чтобы своевременно обеспечивать надлежащих людей надлежащей информацией.

Также в достаточно широкомсмыслетрактует понятие информационной системы Федеральный закон РФ от 27 июля 2006 года № 149-ФЗ «Об информации, информационных технологиях и о защите информации»: «информационная система  совокупность содержащейся в базах данных информации и обеспечивающих её обработку информационных технологий и технических средств».

Одно из наиболее широких определений ИС дал М. Р. Когаловский: «информационной системой называется комплекс, включающий вычислительное и коммуникационное оборудование, программное обеспечение, лингвистические средства и информационные ресурсы, а также системный персонал и обеспечивающий поддержку динамической информационной модели некоторой части реального мира для удовлетворения информационных потребностей пользователей».

Стандарт ISO/IEC 2382-1 дает следующее определение: «Информационная система ‒ система обработки информации, работающая совместно с организационными ресурсами, такими как люди, технические средства и финансовые ресурсы, которые обеспечивают и распределяют информацию».

Российский ГОСТ РВ 51987 определяет информационную систему как «автоматизированную систему, результатом функционирования которой является представление выходной информации для последующего использования».

В узком смысле информационной системой называют только подмножествокомпонентов ИС в широком смысле, включающее базы данных, СУБД и специализированные прикладные программы. ИС в узком смысле рассматривают как программно-аппаратную систему, предназначенную для автоматизации целенаправленной деятельности конечных пользователей, обеспечивающую, в соответствии с заложенной в неё логикой обработки, возможность получения, модификации и хранения информации.

В любом случае основной задачей ИС является удовлетворение конкретных информационных потребностей в рамках конкретной предметной области. Современные ИС де-факто немыслимы без использования баз данных и СУБД, поэтому термин «информационная система» на практике сливается по смыслу с термином «система баз данных».

Миссия информационных систем – производство нужной для организации информации для обеспечения эффективного управления всеми ее ресурсами, создание информационной и технологической среды для осуществления управления организацией.

Потребность постоянно повышать производительность и эффективность труда работников, выпускать больше качественной продукции и т.п. послужили основанием к созданию автоматизированных систем. Автоматизация информационных процессов, способствуя ликвидации многих рутинных операций, повышая комфортность и одновременно эффективность работы, предоставляя пользователям новые, ранее неведомые, возможности работы с информацией, создаёт и новые проблемы, решение которых может быть осуществлено лишь на базе использования общенаучных методов и новых информационных технологий.

Автоматизированная информационная система (Automatedinformationsystem, AIS) - это совокупность программных и аппаратных средств, предназначенных для хранения и (или) управления данными и информацией, а также для производства вычислений.

Основная цель АИС – хранение, обеспечение эффективного поиска и передачи информации по соответствующим запросам для наиболее полного удовлетворения информационных запросов большого числа пользователей.

АИС можно представить как комплекс автоматизированных информационных технологий, составляющих информационную систему, предназначенную для информационного обслуживания потребителей. В АИС обычно применяются автоматизированные рабочие места (АРМ) на базе персональных ЭВМ, распределённые базы данных, программные средства, ориентированные на конечного пользователя.

Основное назначение автоматизированных информационных систем не просто собрать и сохранить электронные информационные ресурсы, но и обеспечить к ним доступ пользователей. Одной из важнейших особенностей АИС является организация поиска данных в их информационных массивах (базах данных). Поэтому АИС практически являются автоматизированными информационно-поисковыми системами (АИПС),

Автоматизированная информационно-поисковая система - программный продукт, предназначенный для реализации процессов ввода, обработки, хранения, поиска, представления данных т.п.

Обычно в системах управления выделяют три уровня: стратегический, тактический и оперативный. На каждом из этих уровней управления имеются свои задачи, при решении которых возникает потребность в соответствующих данных, получить эти данные можно путем запросов в информационную систему. Эти запросы обращены к соответствующей информации в информационной системе. Информационные технологии позволяют обработать запросы и, используя имеющуюся информацию, сформировать ответ на эти запросы. Таким образом, на каждом уровне управления появляется информация, служащая основой для принятия соответствующих решений.

  • Информационный обмен в строительстве

Информационная основа ‒ важная составляющая сферы строительства. Каждый строительный объект имеет свой жизненный цикл, который в общепринятом понимании включает в себя этапы проектирования, подготовки производства и возведения объекта, его последующей эксплуатации, одной или нескольких модернизаций и возможной ликвидации объекта, исчерпавшего свой потенциал. При этом каждый из этапов может быть разделен на отдельные стадии, фазы и другие модули, имеющие количественные и качественные параметры и характеристики. Именно такой подход позволяет достаточно адекватно моделировать создание объекта в виде строительного производственного процесса, имеющего иерархическую и достаточно разветвленную структуру.

Организация информационного пространства объекта, поэтапно формируемая в процессе его жизненного цикла, требует сегодня значительных затрат, подчас сопоставимых со стоимостью материальных ресурсов на строительство самого объекта. Однако, как показывает анализ строительной практики, альтернативы такому подходу нет ‒ информатизация строительного комплекса становится одним из главных элементов научно-технологического развития отрасли.

В настоящее время существует множество программ для строительства, позволяющих выполнить расчеты и визуализировать их результаты. Практически не осталось ограничений по расчету сооружений любой сложности - в статике и динамике, в упругой и неупругой стадиях работы, с учетом последовательности и технологии возведения, включая изменение конструктивной схемы и появление новых нагрузок при реконструкции.

Новые информационные технологии позволяют унифицировать нормативную и информационную базу проектирования, организовать международную техническую и экономическую кооперацию с применением единых методов, алгоритмов и программ.

По-прежнему широкое применение в мире находят автоматизированные системы проектирования. Автоматизация повышает качество работ, снижает материальные затраты, сокращает сроки проектирования, увеличивает производительность труда инженерно-технических работников. Системы автоматизированного проектирования дают возможность на основе новейших достижений фундаментальных наук совершенствовать методологию этого процесса, стимулировать развитие математической теории проектирования сложных систем и объектов. Современное проектирование в области архитектуры, конструирования, дизайна интерьера сейчас уже трудно представить без применения средств компьютерной графики. Огромные потенциальные возможности, заложенные в технологию цифровой обработки изображений, позволяют в короткие сроки получать впечатляющие результаты.

  • Средства автоматизации информационных процессов

Целью автоматизации информационных процессов является повышение производительности и эффективности труда работников, улучшение качества информационной продукции и услуг, повышение сервиса и оперативности обслуживания пользователей. С её помощью ликвидируются рутинные процедуры, сокращается время выполнения заданий, преобразуются, а порой и полностью изменяются технологические процессы, предоставляются пользователям новые виды информационных услуг и продуктов. Автоматизация позволяет преобразовать и видоизменить отдельные технологические процессы, а порой – все основные традиционно используемые технологии. Она предоставляет пользователям новые, ранее неведомые, возможности работы с информацией и одновременно создаёт новые проблемы, решить которые можно лишь используя общенаучные методы и более новые НИТ.

Средствами автоматизации информационных процессов являются программное, техническое, лингвистическое, организационное и правовое обеспечение, используемые или создаваемые при проектировании информационных систем и обеспечивающие их эксплуатацию.

Программное обеспечение представляет инструментальную среду программистов, прикладные программы для соответствующих ЭВМ и установленные на них операционные системы. Это языки программирования, операционные системы, сетевое программное обеспечение, редакторы (текстовые, связей, табличные и др.), библиотеки программ, трансляторы, утилиты и др. Главными среди них являются программные комплексы АИС – системы управления базами данных (СУБД). Их оболочки – это автоматизированные информационно-поисковые системы (АИПС) широкого применения.

Техническое обеспечение АИС включает средства ввода, обработки, хранения, поиска и передачи/приёма информации. Ввод, обработка и хранение данных – стандартные составляющие ЭВМ. Поиск информации осуществляется на основе использования специального ПО. Средства передачи информации представляют собой сетевое и телекоммуникационное оборудование ЭВМ, системы и средства связи.

К лингвистическому обеспечению обычно относят:

  • типы, форматы, структура информации (данных, записей, документов);

  • языковые средства описания (ЯОД, словари данных) и манипулирования данными (ЯМД);

  • классификаторы, кодификаторы, словари, тезаурусы и т.п.

В состав организационного обеспечения АИС входят структурные подразделения организации, её использующей, осуществляющие управление технологическими процессами и поддержку работоспособности системы, а также документация для обеспечения эксплуатации и развития системы.

Правовое обеспечениеАИС – это совокупность правовых норм, регламентирующих правоотношения при создании и функционировании АИС. На этапе разработки АИС оно включает нормативные акты, связанные с договорными отношениями разработчика и заказчика системы, с регулированием отклонений процесса разработки системы, с обеспечением процесса разработки различными ресурсами. На этапе эксплуатации системы – определяет её статус в процессе управления, правовые положения компетенции отдельных структур АИС и организации их деятельности, порядок создания и использования информации в АИС, правовое обеспечение безопасности функционирования АИС. Правовое обеспечение включает нормативные документы, регламентирующие деятельность АИС.

Лекция №3. Векторная графика в строительной информатике

  • Представление графических объектов при обработке в ЭВМ. Растровая графика.

  • Реализации векторной графики в ЭВМ. Принципы работы векторной графики.

  • ArсhiCAD: Назначение и свойства программы.

  • Представление графических объектов при обработке в ЭВМ. Растровая графика.

Под графической информацией понимают рисунок, чертёж, фотографию, картинку в книге (иллюстрацию) или большую картину, изображение на экране монитора и т.д.

Одним из направлений использования компьютеров является компьютерная графика. Компьютерная графическая форма представления информации характеризуется тем, что в ней изображения объектов конструируются из точек. При записи изображения в память компьютера кроме цвета отдельных точек необходимо фиксировать много дополнительной информации: размеры рисунка, яркость точек и т.д.

Любой зрительный образ в символьной форме может быть представлен и в графической форме. Такая графическая форма представления данных более информативна, т.е. обладает большей информационной ёмкостью. Если принять за единицу информационной ёмкости изображения (разрешающей способности) одну клетку, то она будет определяться количеством возможных изображений в этой клетке. Разрешающая способность изображений измеряется в пикселях и равна произведению точек изображения по горизонтали и вертикали.

Как упоминалось выше, в компьютерных программах используется графический интерфейс, предназначенный для отображения различных управляемых элементов на экране компьютера. Эти элементы, а также любые иные электронные (машинные) графические изображения создаются и обрабатываются в специальных компьютерных графических программах, предназначенных для создания машинной графики.

Машинная графика - это совокупность программных средств, предназначенных для выдачи на дисплей или принтер графических изображений в виде промежуточных и окончательных результатов решения задач, а также для работы с графическими изображениями.

При организации переработки информации в системах отображения возможно использование статической и динамической графической информации.

Статическая информация – это относительно стабильная по содержанию информация, используемая в качестве фона. Например, координатная сетка, план, изображение местности и т.д.

Динамическая информация – это информация, изменяемая в течение определённого времени по содержанию или положению на экране. Она может являться функцией случайных параметров.

Для работы с изображениями, представленными в компьютерах в электронной форме, используются графические редакторы и процессоры.

Графическая машиночитаемая форма представления информации эффективна и экономна. Её применяют при необходимости оперативно, лаконично и наглядно довести до пользователей статические, динамические, плоские и объёмные изображения. Для этого используют графики, диаграммы, фотографии, рисунки, слайды, анимации и другие неподвижные и подвижные графические объекты и т.п.

Современные графические редакторы предназначены для подготовки и редактирования графических изображений (графиков, эскизов, чертежей, рисунков и др.) и предоставления их пользователям. Широко применяются графические редакторы: Paint, AdobePaintbrush, AdobePhotoshop, Corel DRAW и PageMaker. Последние два относятся также к издательским программам.

Различают растровую, векторную и фрактальную компьютерную графику. Эти виды отличаются принципами формирования изображения. Для каждого из них используется свой способ кодирования.

В графическом режиме экран монитора представляет совокупность светящихся точек (пикселей; “pixel”, от англ. “pictureelement”), определяющих разрешающую способность монитора, которая зависит также от его типа и режима работы. Упрощённо изображение кодируется двоичными значениями (битами), представляющими ряды пикселей в изображении. При этом в зависимости от того, является пиксель чёрным или белым получаем значения битов, равные нулю или единице.

Использование цветных изображений связано с тем, что каждый пиксель должен представлять комбинацию битов, определяющую его цвет. При растровом методе такую комбинацию битов часто называют битовой картой (bitmap). Она представляет карту или схему исходного изображения. Чаще всего цвет каждого пикселя раскладывают на три составляющие (красную, зелёную и синюю). Для передачи интенсивности каждого цвета обычно используется ещё один байт. Поэтому для представления каждого пикселя исходного изображения требуются три байта.

Файлы растровой (или битовой) графики содержат в определённой последовательности совокупность отдельных точек растровых изображений (“bitmapimages”). В качестве графических редакторов, работающих с растровой графикой, используют Paint, AdobePhotoshop и др. Форматы файлов растровой графики (BMP, PCX, GIF, TIFF и JPEG) предусматривают собственные способы кодирования информации о пикселях и другой присущей компьютерным изображениям информации. Кроме того, графические редакторы предлагают собственные форматы графических данных (например, EPS, PSD, PDD, CDR, CMX и др.), которые могут преобразовываться в другие графические форматы с помощью специальных конверторов.

Растровую графику применяют при разработке электронных и полиграфических изданий. Иллюстрации, подготовленные художниками на традиционных носителях, сканируют или фотографируют. Для ввода растровых изображений в компьютер используют сканеры, цифровые фото- и видеокамеры. В Интернете также используются растровые изображения.

  • Реализации векторной графики в ЭВМ. Принципы работы векторной графики.

Векторное изображение представляет графический объект, состоящий из элементарных отрезков и дуг. Положение этих элементарных объектов определяется координатами точек и длиной радиуса. При этом основным элементом векторного изображения является не точка, а линия. Следовательно, линия – элементарный объект векторного изображения.

Для каждой линии указывается её характер (сплошная, пунктирная, штрих-пунктирная), толщина и цвет. К другим свойствам линии относят её форму. Замкнутые линии можно заполнить каким-нибудь цветом, текстурой или картой. Любая простая линия имеет две вершины, называемые узлами.

Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами. При каждом отображении векторное изображение перерисовывается компьютером, что несколько замедляет работу, но позволяет получать изображения с высоким разрешением.

В векторной графике объём памяти, занимаемый линией, не зависит от её размеров, так как линия представляется формулой или её параметрами. Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов. Любой объект состоит из совокупности связанных линий. Это обстоятельство определило ещё одно название данного явления – объектно-ориентированная графика.

На экран компьютера изображение выводится в виде точек. При этом программа перед выводом изображения производит вычисление координат экранных точек отображаемого объекта. Аналогичные вычисления производятся и при выводе объектов на печать. Это обстоятельство вызвало появление ещё одного названия данного метода – вычисляемая графика.

Векторная графика предназначена для создания иллюстраций и широко используется в рекламном деле, дизайне, редакционном и издательском деле. Оформительские работы, основанные на применении шрифтов и простых геометрических элементов, проще выполняются с помощью векторной графики. При этом размер символов может изменяться в широких пределах. Такие шрифты называют масштабируемыми. Например, технология TrueType, разработанная компаниями Microsoft и AppleComputer, описывает способ отображения символов в тексте. Векторные методы также широко применяются в автоматизированных системах проектирования (computer-aideddesign, CAD), используемых для работы со сложными трёхмерными объектами.

Однако векторная технология не позволяет достичь фотографического качества изображений объектов, как при использовании растровых методов.

Работать с векторными рисунками можно с помощью редактора Corel DRAW и др. Наиболее популярны векторные форматы: WMF, CDR, DXF.

Фрактальные графические изображения создаются автоматически с помощью специальных математических вычислений, то есть путём программирования, а не рисования. Фрактальная графика обычно используется в оформительских работах и развлекательных программах.

Для просмотра, масштабирования и конвертирования графических файлов используются различные программы. Наиболее популярной из них считается ACD See фирмы ACD System.

Для создания презентаций широко используется программа PowerPoint. Она входит в состав разработанного фирмой Microsoft пакета MS Office и является полнографическим пакетом, который служит для создания на компьютере презентаций, рекламных роликов и аналогичных материалов, например, слайд-фильмов.

  • ArсhiCAD: Назначение и свойства программы.

ArchiCAD графический программный пакет САПР для архитекторов, созданный фирмой Graphisoft.ПакетArchiCAD базируется на концепции «виртуального здания», впервые разработанной компанией Graphisoft еще в 1984 году. Суть концепции состоит в том, что проект ArchiCAD представляет собой выполненную в натуральную величину объёмную модель реального здания, существующую в памяти компьютера. Для её выполнения проектировщик на начальных этапах работы с проектом фактически «строит» здание, используя при этом инструменты, имеющие свои полные аналоги в реальности: стены, перекрытия, окна, лестницы, разнообразные объекты и т. д. После завершения работ над «виртуальным зданием», проектировщик получает возможность извлекать разнообразную информацию о спроектированном объекте:

    • чертежи (поэтажные планы, разрезы и фасады, узлы и детали и т. п.);

    • результаты расчета количественных показателей (ведомости, спецификации, экспликаций и т. п.);

    • презентационные материалы (фото реалистические изображения, анимационные фильмы, сцены виртуальной реальности);

    • файлы различных форматов для обмена данными со смежниками, заказчиками, консультантами и другими участниками процесса проектирования, пользующимися другими программами (AutoCAD, Microstation, 3D Studio и др.).

Технология «виртуального здания» позволяет работать не с отдельными, физически никак не связанными между собой чертежами, а со всем проектом в целом. Важнейшей особенностью пакета ArchiCAD является то, что, работая с ним, пользователь имеет дело не с набором чертежных элементов, а с привычными строительными конструкциями: стенами, окнами, перекрытиями, крышами и т. д. Все создаваемые конструкции являются параметрическими (т. е. описываются набором характерных для них параметров) и, следовательно, в любой момент могут быть отредактированы изменением их параметров. При этом каждый конструктивный элемент несет в себе всю информацию для представления его на чертежах ив объемной модели, а также для учета его свойств в сметах.Любые изменения, сделанные, например, на плане здания, автоматически отобразятся (перестроятся, перерассчитаются) на разрезах, видах, в спецификациях, экспликациях и пр. Такой подход обеспечивает значительное сокращение времени проектирования. Кроме того, при правильной работе с виртуальным зданием гарантировано обнаружение и устранение большинства проблем, которые обязательно проявились бы на более поздних этапах проектирования или, что ещё хуже, уже на строительной площадке.

Благодаря большому количеству настроек стандартных инструментов, объекты настраиваются в соответствии с пожеланиями пользователя.

ArchiCAD позволяет работать над одним проектом группе архитекторов. Развитая система групповой работы (teamwork) также сокращает время проектирования и способствует недопущению несоответствий в частях проекта, разрабатываемых разными архитекторами. В 13-й версии программы была представлена революционная технология Teamwork 2.0, обеспечивающая непревзойдённую гибкость и целостность командной работы.

Начиная с 12 версии ArchiCAD разработчик выпускает дополнительные приложения, призванные расширить функционал базового продукта. Среди этих приложений:

  • MEP Modeler, предназначенный для создания, редактирования и импорта 3D-моделей инженерных коммуникаций в среде ArchiCAD;

  • EcoDesigner, позволяющий проводить энергетические расчёты здания силами архитекторов;

  • VirtualBuildingExplorer, предназначенный для создания интерактивной презентации созданного в ArchiCAD проекта.

В Archicadесть возможность импортировать листы готовых чертежей из формата PDF непосредственно на листы проекта или даже в пространство модели!

Формат PDF компании Adobe – это наиболее используемый и универсальный формат для обмена-передачи документации между проектировщиками. Заводы и производители часто публикуют рабочие и технические материалы с типовыми узлами, технологиями сборки и крепежа на сайтах в формате PDF.

Лекция №4. СУБД и телекоммуникационные системы в строительной информации.

  • Базы данных и информационные системы.

  • Компьютерные сети и телекоммуникации строительных организаций.

  • Строительные расчеты в электронных таблицах. Численные методы.

  • Базы данных и информационные системы

В современных базах данных хранятся не только данные, но и информация.

База данных(БД)–организованная структура, предназначенная для хранения информации. Современные БД позволяют размещать в своих структурах не только данные, но и методы (т.е.программный код), с помощью которых происходит взаимодействие с потребителем или другими программно-аппаратными комплексами.

Системы управления базами данных(СУБД) – комплекс программных средств, предназначенных для создания структуры новой базы, наполнения ее содержанием, редактирования содержимого и визуализации информации. Под визуализацией информации базыпонимается отбор отображаемых данных в соответствии с заданным критерием, их упорядочение, оформление и последующая выдача на устройство вывода или передача по каналам связи.

Существует много систем управления базами данных. Они могут по-разному работать с разными объектами и предоставляют пользователю разные функции и средства. Большинство СУБД опираются на единый устоявшийся комплекс основных понятий.

ПоиспользуемоймоделиданныхСУБДразделяютнаиерархические, сетевые, реляционные, объектно-ориентированныеидр.

Структура простейшей базы данных. Если в БД нет никаких данных (пустая база), то это все равно полноценная БД, т.к. она содержит информацию о структуре базы.

Структура базыопределяет методы занесения данных и хранения их в базе. БД могут содержать различные объекты. Основными объектами БД являются таблицы. Простейшая база данных имеет хотя бы одну таблицу. Структура простейшей базы данных тождественно равна структуре ее таблицы.

Структуру двумерной таблицы образуют столбцы и строки. Их аналогами в структуре простейшей базы данных являются поля и записи.

Если записей в таблице нет, то ее структура образована набором полей. Изменив состав полей базовой таблицы (или их свойства), тем самым изменяем структуру данных, и,соответственно, получаем новую базу данных.

Поля БД определяют групповые свойства данных, записываемых в ячейки, принадлежащие каждому из полей. Например, свойства полей могут быть такими: имя поля, тип поля,размер поля, формат поля, маска ввода, подпись, значение по умолчанию, условие на значение, обязательное поле, индексированное поде, пустые строки, и т.д.Типы данных: текстовый, числовой, денежный, дата/время, счетчик, поле мемо(большой объем текста), логический, поле объекта OLE (для мультимедийных объектов), гиперссылка, место подстановок.

Для работы с базой данных зачастую достаточно средств СУБД. Однако если требуется обеспечить удобство работы с БД неквалифи­цированным пользователям или интерфейс СУБД не устраивает пользо­вателей, то могут быть разработаны приложения. Их создание требует программирования. Приложение представляет собой программу или комплекс программ, обеспечивающих автоматизацию решения какой-либо прикладной задачи. Приложения могут создаваться в среде или вне среды СУБД ‒ с помощью системы программирования, исполь­зующей средства доступа к БД, к примеру, Delphi или С++ Вuildег. Приложения, разработанные в среде СУБД, часто называют приложе­ниями СУБД, а приложения, разработанные вне СУБД, ‒ внешними приложениями.

Словарь данных представляет собой подсистему БД, предназначен­ную для централизованного хранения информации о структурах дан­ных, взаимосвязях файлов БД друг с другом, типах данных и форма­тах их представления, принадлежности данных пользователям, кодах защиты и разграничения доступа и т. п.

Информационные системы, основанные на использовании БД, обычно функционируют в архитектуре клиент-сервер. В этом случае БД размещается на компьютере-сервере, и к ней осуществляется сов­местный доступ.

Сервером определенного ресурса в компьютерной сети называется компьютер (программа), управляющий этим ресурсом, клиентом ‒ компьютер (программа), использующий этот ресурс. В качестве ресур­са компьютерной сети могут выступать, к примеру, базы данных, фай­лы, службы печати, почтовые службы.

Достоинством организации информационной системы на архитек­туре клиент-сервер является удачное сочетание централизованного хранения, обслуживания и коллективного доступа к общей корпора­тивной информации с индивидуальной работой пользователей.

Согласно основному принципу архитектуры клиент-сервер, данные обрабатываются только на сервере. Пользователь или приложение фор­мируют запросы, которые поступают к серверу БД в виде инструкций языка SQL. Сервер базы данных обеспечивает поиск и извлечение нуж­ных данных, которые затем передаются на компьютер пользователя. Достоинством такого подхода в сравнении предыдущим является за­метно меньший объем передаваемых данных.

Выделяют следующие виды СУБД:

  • полнофункциональные СУБД;

  • серверы БД;

  • средства разработки программ работы с БД.

Полнофункциональные СУБД представляют собой традиционные СУБД. КнимотносятсяdBaseIV, MicrosoftAccess, MicrosoftFoxProидр.

Серверы БД предназначены для организации центров обработки данных в сетях ЭВМ. Серверы БД обеспечивают обработку запросов клиентских программ обычно с помощью операторов SQL. Примера­ми серверов БД являются: Microsoft SQL Server, InterBase и др.

В роли клиентских программ в общем случае могут использоваться СУБД, электронные таблицы, текстовые процессоры, программы элек­тронной почты и др.

  • Компьютерные сети и телекоммуникации строительных организаций.

В настоящее время персональные компьютеры в автономном режиме практически не используются, их, как правило, объединяют в вычислительные или компьютерные сети.

Компьютерная сеть – это совокупность компьютеров и телекоммуникационного оборудования, обеспечивающая информационный обмен компьютеров в сети. Основное назначение компьютерных сетей - обеспечение доступа к распределенным ресурсам.

Виды компьютерных сетей.Локальные и территориально-распределенные сети

Локальная сеть (LAN)связывает ПК и принтеры, обычно находящиеся в одном здании (или комплексе зданий). Территориально-распределенная сеть (WAN) соединяет несколько локальных сетей, географически удаленных друг от друга.

Локальная сеть

Локальные сети (ЛС) представляющие собой самую элементарную форму сетей, соединяют вместе группу ПК или связывают их с более мощным компьютером, выполняющим роль сетевого сервера (см. рисунок). Все ПК в локальной сети могут использовать специализированные приложения, хранящиеся на сетевом сервере, и работать с общими устройствами: принтерами, факсами и другой периферией. Каждый ПК в локальной сети называется рабочей станцией или сетевым узлом.

Локальные сети позволяют отдельным пользователям легко и быстро взаимодействовать друг с другом. Вот лишь некоторые задачи, которые позволяет выполнять ЛС:

  • совместная работа с документами;

  • упрощение документооборота: вы получаете возможность просматривать, корректировать и комментировать документы не покидая своего рабочего места, не организовывая собраний и совещаний, отнимающих много времени;

  • сохранение и архивирование своей работы на сервере, чтобы не использовать ценное пространство на жестком диске ПК;

  • простой доступ к приложениям на сервере;

  • облегчение совместного использования в организациях дорогостоящих ресурсов, таких как принтеры, накопители CD-ROM, жесткие диски и приложения (например, текстовые процессоры или программное обеспечение баз данных).

Территориально-распределенные сети

Территориально-распределенные сети обеспечивают те же преимущества, что и локальные, но при этом позволяют охватить большую территорию. Обычно для этого используется коммутируемая телефонная сеть общего пользования (PSTN, PublicSwitchedTelephoneNetwork) с соединением через модем или линии высокоскоростной цифровой сети с предоставлением комплексных услуг (ISDN, IntegratedServicesDigitalNetwork). Линии ISDN часто применяются для передачи больших файлов, например содержащих графические изображения или видео.

Встраивая в базовые локальные сети функциональность территориально-распределенных сетей, реализуемую с помощью модема или сервера удаленного доступа, можно выгодно использовать технологии внешних коммуникаций, в том числе:

  • передачу и прием сообщений с помощью электронной почты (e-mail);

  • доступ к Internet.

Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим проводным и беспроводным каналам связи).

Телекоммуникационная сеть - это система технических средств, посредством которой осуществляются телекоммуникации.

Процессы проектирования и возведения объекта при современной концепции строительства, как правило, выполняются параллельно, что определяет необходимость интенсивного обмена результатами работы между проектными и строительными организациями, включая генерального подрядчика, субподрядчиков, поставщиков и других участников проекта, зачастую географически удаленных друг от друга и использующих несовместимые компьютерные платформы и программные средства. Взаимодействие участников может быть эффективным, только если оно базируется на единой информационной модели объекта. Длительность жизни такой структуры определяется временем выполнения заказа на изыскательские, проектные и строительные работы, составляющие значительную часть жизненного цикла создаваемого строительного объекта.

В терминах CALS (ContinuousAcquisitionandLifeCycleSupport – непрерывное приобретение информации и поддержка жизненного цикла) такая структура называется виртуальным строительным объектом, виртуальной стройкой или виртуальным строительным предприятием. Виртуальное предприятие не является юридическим лицом, но характеризуется единым информационным пространством (ЕИП), обеспечивающим, при условии соблюдения соответствующих стандартов, совместное использование информации.

Построение открытых распределённых автоматизированных систем для проектирования и управления в промышленности, строительстве составляет основу современных CALS-технологий. Главная проблема их построения  обеспечение единообразного описания и интерпретации данных, независимо от места и времени их получения в общей системе, имеющей масштабы вплоть до глобальных. Структура проектной, технологической и эксплуатационной документации, языки её представления должны быть стандартизированными. Тогда становится реальной успешная работа над общим проектом разных коллективов, разделённых во времени и пространстве и использующих разные CAD/CAM/CAE-системы. Одна и та же конструкторская документация может быть использована многократно в разных проектах, а одна и та же технологическая документация  адаптирована к разным производственным условиям, что позволяет существенно сократить и удешевить общий цикл проектирования и производства. Кроме того, упрощается эксплуатация систем.

В настоящее время существует множество файлов, при помощи которых можно передать геометрическую информацию из среды AutoCAD (или AutodeskMechanicalDesktop) в другие программные средства. Для обеспечения информационной интеграции CALS использует стандарты IGES и STEP в качестве форматов данных. В CALS входят также стандарты электронного обмена данными, электронной технической документации и руководства для усовершенствования процессов.

DigitalRepresentationforCommunicationofProductDefinitionData (IGES) Цифровое Представление для Коммуникации Данных Определения Продукта двумерный/трехмерный векторный формат графики; используется многими CAD-программами.При помощи IGES, в CAD можно передавать модели круговых диаграмм, каркасов моделей, поверхностей любой формы или представления сплошных моделей. Приложения, поддерживающие IGES, включают в себя инженерную графику, аналитические модели и прочие производственные функции.

STEP (англ. STandardforExchangeofProductmodeldata — стандарт обмена данными модели изделия) — совокупность стандартов используемая в САПР. Позволяет описать весь жизненный цикл изделия, включая технологию изготовления и контроль качества продукции. Является основным конкурентом стандарта IGES. В последнее время вытесняет его благодаря более широким возможностям хранения информации.

  • Строительные расчеты в электронных таблицах. Численные методы.

Электронная таблица Excel - интегрированная система. Она предназначена для создания и обработки электронных таблиц, списков (баз данных), представления результатов обработки таблиц и списков в виде диаграмм и графиков функций, подготовки выходных форм документов, сохранения их на дисках и вывода на печать.

Графические возможности электронной таблицы

Диаграммы и графики позволяют представить числовые данные, результаты обработки таблиц в наглядной форме. При создании диаграммы можно выделить три этапа: создание таблицы, описание графика на бумаге, описание графика в электронной таблице и его использование.

Хорошо разработанная таблица содержит все элементы необходимые для описания графика. При описании графика на бумаге необходимо установить соответствие между элементами таблицы и графиком (при достаточном навыке этот этап не обязателен). Если на таблице нет каких-то элементов, то их необходимо описать вне пределов таблицы.

График включает, обычно, следующие элементы: заголовок, обозначение осей, разметку по осям, описание меток, числовые данные на графике. Кроме того, необходимо определить тип диаграммы, наиболее подходящий для имеющихся данных.

Для построения графиков и диаграмм в электронной таблице используется Мастер диаграмм, который за четыре шага позволяет описать все элементы графика. Имеется возможность редактировать график после построения.

Операции с матрицами.

Электронная таблица позволяет выполнять линейные преобразования матриц: умножение, деление матриц на число, прибавление или вычитание чисел,

а также операции над матрицами: сложение, умножение матриц, транспонирование, вычисление определителей. Средствами Excel можно решать и системы линейных алгебраических уравнений. Для этой цели электронная таблица имеет ряд функций для работы с матрицами:

МОПРЕД(массив) – вычисление определителя матрицы;

МОБР(массив) – вычисление обратной матрицы;

МУМНОЖ(массив; массив) – умножение матриц;

ТРАНСП(массив) – транспонирование матриц.

Решение систем линейных алгебраических уравнений

Для решения систем линейных алгебраических уравнений применяют аналитические и численные методы.

Электронная таблица Excel не имеет функций для решения систем уравнений, формулы для вычисления матриц необходимо формировать самостоятельно, используя известные методы, например метод Крамера или метод Гаусса (метод исключения переменных). Однако, используя встроенные функции МОБР, МУМНОЖ и МОПРЕД эти операции выполняются достаточно легко.

Численные методы.

Решение современных задач строительной механики связано с использованием новых материалов, особенно полимерных, а также более сложных расчетных схем, близких к реальным конструкциям. Это приводит к увеличению числа факторов, которые необходимо учитывать при исследовании напряженно-деформированного состояния, устойчивости и колебания конструкций, и усложняет расчет.

При комплексном подходе к решению сложных задач строительной механики аналитические методы в большинстве случаев малоэффективны. Статистический и динамический расчет десятки и сотни раз статистически неопределимых стержневых систем таких сложных конструкций как тонкие оболочки, крупные массивы гидротехнических сооружений, стал возможным только широкому применению численных методов расчета ориентированных на применение ЭВМ. Применение этих методов способствовало становлению и развитию нового направления в исследовании сложных объектов статистического и динамического расчета – вычислительного экспериментирования. В процессе проведения вычислительного эксперимента выбранная математическая модель подвергается всестороннему исследованию с целью ее уточнения и улучшения. Определяется, какими факторами можно пренебречь, а какие следует учесть. Кроме того решаются вопросы выбора вычислительного алгоритма, оценки устойчивости процесса вычислений и его точности.

При использовании вычислительных методов, ориентированных на применение ЭВМ, всегда получают некоторое приближенное решение задачи. Поэтому при выборе метода решения задачи необходимо обеспечить заданную точность вычислений, а кроме того, и устойчивость вычислительного процесса. Все это надо учитывать при постановке задачи и выборе алгоритма ее решения.