
- •Силлабус
- •Силлабус
- •Пререквизиты учебной дисциплины
- •5. Характеристика учебной дисциплины
- •6. Список основной и дополнительной литературы
- •7. Контроль и оценка результатов обучения
- •Политика учебной дисциплины
- •Глоссарий
- •Лекция №1.
- •Лекция № 2. Квантово-механическая модель атома. Квантовые числа, их физический смысл.
- •Лекция № 3
- •Лекция № 4 Теоретические методы, применяемые при изучении строения молекул и химической связи. Основные положения методов валентных связей.
- •Лекция № 5. Энергетика химических реакций. I закон термодинамики. II закон термодинамики
- •II закон термодинамики
- •Контрольные вопросы
- •Лекция № 6. Химическая кинетика
- •Контрольные вопросы
- •Лекция № 7.
- •Контрольные вопросы
- •Лекция №8 Свойства растворов. Растворы электролитов. Теория электролитической диссоциации. Ионное произведение воды.
- •Лекция №9 Растворы неэлектролитов. Закон разбавления Оствальда. План.
- •Контрольные вопросы
- •Окислительно-восстановительные реакции и электрохимические процессы. Процессы окисления и восстановления.
- •Контрольные вопросы
- •1. Коррозия металлов.
- •Методы защиты от коррозии
- •Номенклатура комплексных соединений
- •Методы установления координационных формул
- •Устойчивость комплексных соединений
- •Контрольные вопросы
- •Лекция № 14 Коллоидно-химические основы охраны окружающей среды.
- •Лекция №15 Химическая идентификация: качественный и количественный анализ, физико-химические методы анализа.
- •Тема: Методы очистки веществ. Фильтрование.
- •План занятия:
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторная работа №3
- •Лабораторный практикум
- •Лабораторная работа №5 Тема: Перегонка. Перекристаллизация.
- •Вопросы и задания:
- •Лабораторная работа № 7 Тема: Скорость химических реакций. Взаимодействие тиосульфата натрия с серной кислотой.
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторный практикум
- •Лабораторная работа № 8
- •Лабораторный практикум
- •Контрольные вопросы и задачи.
- •Лабораторная работа № 9
- •Лабораторный практикум
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторная работа №12 Тема: Водород. Получение и химические свойства водорода.
- •Лабораторный практикум
- •Лабораторная работа №13 Тема: Кислород. Получение и химические свойства кислорода.
- •Упражнения и задача
- •Лабораторная работа № 14 Тема: Комплексные соединения. Химические свойства комплексных соединений.
- •Получение и свойства окиси кобальта
- •Получение аммиаката никеля
- •Упражнения
- •Лабораторная работа№ 15 Тема: Химия металлов и их соединений. Химия неметаллов и их соединений.
- •1) Плавление серы. Получение пластической серы
- •2) Получение ромбической серы
- •Получение калийной селитры
- •Реакция открытия ионов Na- и к'
- •Вопросы
Лекция №1.
Строение атома. Модели строения атома. Гипотеза Планка.
Цель: рассмотреть строение атома, квантово-механические модели строения атома.
План лекции:
Модели строения атома.
Строение атома по
Гипотеза Планка.
Атом в переводе с греческого неделимый. Понятие введено Демокритом как мельчайшийкирпичик мироздания (V век до н.э.). Считалось, что атомы неделимы. В конце XIX века установлен ряд фактов, свидетельствующих о сложном составе атома и овозможности их взаимопревращений. Модели строения атома.
Первые указания о сложном строении атома были получены при изучении процессов прохождения электрического тока через жидкости. Опыты выдающегося английского ученого М.Фарадея в тридцатых годах XIX в. навели на мысль о том, что электричество существует в виде отдельных единичных зарядов.
Величины этих единичных зарядов электричества были определены в более поздних экспериментах по пропусканию электрического тока через газы (опыты с так называемыми катодными лучами). Было установлено, что катодные лучи — это поток отрицательно заряженных частиц, которые получили названия электронов.
Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. (А.Беккерель, 1896 г.). Последовавшее за этим установление природы α-, β-, и γ-лучей, образующихся при радиоактивном распаде (Э.Резерфорд, 1899—1903 гг.), открытие ядер атомов (Э.Резерфорд, 1909—1911 гг.), определение заряда электрона (Р.Милликен, 1909 г.) позволили Э.Резерфорду в 1911 г. предложить одну из первых моделей строения атома.
Модель Резерфорда. Суть планетарной модели строения атома (Э.Резерфорд, 1911 г.) можно свести к следующим утверждениям:
1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).
3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.
Эта модель оказалась очень наглядной и полезной для объяснения многих экспериментальных данных, но она сразу обнаружила и свои недостатки. В частности, электрон, двигаясь вокруг ядра с ускорением (на него действует центростремительная сила), должен был бы, согласно электромагнитной теории, непрерывно излучать энергию. Это привело бы к тому, что электрон должен был бы двигаться вокруг ядра по спирали и в конце концов упасть на него. Никаких доказательств того, что атомы непрерывно исчезают, не было, отсюда следовало, что модель Резерфорда в чем-то ошибочна.
Теория Бора. В 1913 г. датский физик Н.Бор предложил свою теорию строения атома. Как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца. Однако к этому времени Дж.Франк и Г.Герц (1912 г.) доказали дискретность энергии электрона в атоме и это позволило Бору положить в основу новой теории два необычных предположения (постулата):
1. Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам.
Радиус орбиты r и скорость электрона v связаны квантовым соотношением Бора:
mrv = nћ
где m — масса электрона, n — номер орбиты, ћ — постоянная Планка (ћ = 1,05∙10-34 Дж∙с).
2. При движении по стационарным орбитам электрон не излучает и не поглощает энергии.
Таким образом, Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния, например с энергией Е1, в другое — с энергией Е2, что соответствует переходу электрона с одной стационарной орбиты на другую. При таком переходе излучается или поглощается энергия ∆E, величина которой определяется соотношением
∆E = E1 – E2 = hv,
где v — частота излучения, h = 2p ћ = 6,62∙10-34 Дж∙с.
Бор, используя данное уравнение, рассчитал частоты линий спектра атома водорода, которые очень хорошо согласовывались с экспериментальными значениями, но было обнаружено также и то, что для других атомов эта теория не давала удовлетворительных результатов.
Квантовая модель строения атома. В последующие годы некоторые положения теории Бора были переосмыслены и дополнены. Наиболее существенным нововведением явилось понятие об электронном облаке, которое пришло на смену понятию об электроне только как частице. Теорию Бора сменила квантовая теория, которая учитывает волновые свойства электрона и других элементарных частиц, образующих атом.
Свойства элементарных частиц, образующих атом
Частица |
Заряд |
Масса |
|||
Кл |
условн. ед. |
г |
а.е.м. |
||
Электрон |
-1,6∙10-19 |
-1 |
9,10∙10-28 |
0,00055 |
|
Протон |
1,6∙10-19 |
+1 |
1,67∙10-24 |
1,00728 |
|
Нейтрон |
0 |
0 |
1,67∙10-24 |
1,00866 |
В основе современной теории строения атома лежат следующие основные положения:
1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна, подобно частице, электрон обладает определенной массой и зарядом; в то же время, движущийся электрон проявляет волновые свойства, например, характеризуется способностью к дифракции. Длина волны электрона λ и его скорость v связаны соотношением де Бройля:
λ = h / mv,
где m — масса электрона.
2. Для электрона невозможно одновременно точно, измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение
∆x∙m∙∆v > ћ/2,
где ∆х — неопределенность положения координаты, ∆v — погрешность измерения скорости.
3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части около ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.
4. Ядра атомов состоят из протонов и нейтронов (общее название — нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.
Последнее положение было сформулировано после того, как в 1920 г. Э.Резерфорд открыл протон, а в 1932 г. Дж.Чедвик — нейтрон.
Различные виды атомов имеют общее название — нуклиды. Нуклиды достаточно характеризовать любыми двумя числами из трех фундаментальных параметров: А — массовое число, Z— заряд ядра, равный числу протонов, и N — число нейтронов в ядре. Эти параметры связаны между собой соотношениями:
Z = А - N, N = А - Z, А= Z + N.
Нуклиды с одинаковым Z, но различными А и N, называют изотопами.
Сформулированные выше положения составляют суть новой теории, описывающей движение микрочастиц, — квантовой механики (механику, применимую к движению обычных тел и описываемую законами Ньютона, стали называть классической механикой). Наибольший вклад в развитие этой теории внесли француз Л. де Бройль, немец В.Гейзенберг, австриец Э.Шредингер, англичанин П.Дирак. Впоследствии каждый из этих ученых был удостоен Нобелевской премии.
Гипотеза Планка.
Стремясь
преодолеть затруднения классической
теории при объяснении излучения
черного тела, М. Планк в 1900 г.
высказал гипотезу: атомы
испускают электромагнитную
энергию от дельными
порциями —квантами. Энергия Е |
|
где h=6,63.10-34 Дж.с—постоянная Планка. |
|
Иногда удобно измерять энергию и постоянную Планка вэлектронвольтах. Тогда h=4,136.10-15 эВ.с. В атомной
физике употребляется также величина
|
|
Контрольные вопросы
Кто открыл строение атома?
В чем заключается суть теории Бора?
С какой точки зрения рассмотрены электроны в теории Планка?
Что такое кванты?