
- •Силлабус
- •Силлабус
- •Пререквизиты учебной дисциплины
- •5. Характеристика учебной дисциплины
- •6. Список основной и дополнительной литературы
- •7. Контроль и оценка результатов обучения
- •Политика учебной дисциплины
- •Глоссарий
- •Лекция №1.
- •Лекция № 2. Квантово-механическая модель атома. Квантовые числа, их физический смысл.
- •Лекция № 3
- •Лекция № 4 Теоретические методы, применяемые при изучении строения молекул и химической связи. Основные положения методов валентных связей.
- •Лекция № 5. Энергетика химических реакций. I закон термодинамики. II закон термодинамики
- •II закон термодинамики
- •Контрольные вопросы
- •Лекция № 6. Химическая кинетика
- •Контрольные вопросы
- •Лекция № 7.
- •Контрольные вопросы
- •Лекция №8 Свойства растворов. Растворы электролитов. Теория электролитической диссоциации. Ионное произведение воды.
- •Лекция №9 Растворы неэлектролитов. Закон разбавления Оствальда. План.
- •Контрольные вопросы
- •Окислительно-восстановительные реакции и электрохимические процессы. Процессы окисления и восстановления.
- •Контрольные вопросы
- •1. Коррозия металлов.
- •Методы защиты от коррозии
- •Номенклатура комплексных соединений
- •Методы установления координационных формул
- •Устойчивость комплексных соединений
- •Контрольные вопросы
- •Лекция № 14 Коллоидно-химические основы охраны окружающей среды.
- •Лекция №15 Химическая идентификация: качественный и количественный анализ, физико-химические методы анализа.
- •Тема: Методы очистки веществ. Фильтрование.
- •План занятия:
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторная работа №3
- •Лабораторный практикум
- •Лабораторная работа №5 Тема: Перегонка. Перекристаллизация.
- •Вопросы и задания:
- •Лабораторная работа № 7 Тема: Скорость химических реакций. Взаимодействие тиосульфата натрия с серной кислотой.
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторный практикум
- •Лабораторная работа № 8
- •Лабораторный практикум
- •Контрольные вопросы и задачи.
- •Лабораторная работа № 9
- •Лабораторный практикум
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторный практикум
- •Вопросы и задания
- •Лабораторная работа №12 Тема: Водород. Получение и химические свойства водорода.
- •Лабораторный практикум
- •Лабораторная работа №13 Тема: Кислород. Получение и химические свойства кислорода.
- •Упражнения и задача
- •Лабораторная работа № 14 Тема: Комплексные соединения. Химические свойства комплексных соединений.
- •Получение и свойства окиси кобальта
- •Получение аммиаката никеля
- •Упражнения
- •Лабораторная работа№ 15 Тема: Химия металлов и их соединений. Химия неметаллов и их соединений.
- •1) Плавление серы. Получение пластической серы
- •2) Получение ромбической серы
- •Получение калийной селитры
- •Реакция открытия ионов Na- и к'
- •Вопросы
Методы защиты от коррозии
1. Защита легированием – при легировании стали хромом или хромом и никелем (более эффективно) сталь способна сопротивляться коррозии, так как её электродный потенциал становится высоким и она является отрицательно заряженным катодом. Дорогостоящий никель частично заменяют более дешевым марганцем. Хрома должно быть не менее 12 %, иначе сталь становится паложительно заряженным анодом (на нержавеющей посуде стоит знак «18/10», это значит, в металле 10 % Ni и 18 % Cr).
2. Защита неметаллическими плёнками. Это окисные плёнки, получаемые оксидированием и фосфатные плёнки, получаемые фосфатированием. Детали обрабатывают либо сильным окислителем (едким натром NаОН), либо смесями фосфорной кислоты и её солей, в результате детали покрываются окисной плёнкой чёрно-синего цвета (воронение), либо фосфатной плёнкой.
3. Защита металлическими покрытиями. На поверхность детали наносится тонкий слой другого металла, в зависимости от того, какой металл наносится, процесс называется:
– Zn – цинкование, Al – алитирование, Sn – лужение, Pb – свинцевание, Cr – хромирование, Cd – кадмирование, Ni – никелирование, Cu – меднение,
также покрывают металл латунью и бронзой.
Способы нанесения металла на деталь:
погружением детали в расплавленный металл, применяется для нанесения пленок из плавящихся при низких температурах металлов (цинка, олова, свинца) – используется в случае деталей небольшого размера;
путём распыления расплавленного металла (цинка, кадмия) сжатым воздухом с набрызгиванием его на деталь – для крупных деталей;
диффузионным методом – алитирование, хромирование (см. выше, ХТО).
гальваническим путём – электролиз водных растворов солей того металла, который является покрытием. Преимущества метода: управляемость процессом, экономное расходование металла, отсутствие нагрева. Различают анодное и катодное покрытие.
– анодное (цинком) – у цинка электродный потенциал ниже, чем у железа, поэтому он защищает и механически, и электрохимически, так как он является анодом (+) и разрушается;
– катодное (оловом) – электродный потенциал олова выше, чем у железа, то защищает только механически, а в случае повреждения плёнки электрохимическим путём разрушается железо.
методом плакирования – термин происходит от французского слова «плаке», что значит накладывать, покрывать – горячей прокаткой или прессованием покрывают один металл тонким слоем другого металла – например, сталь латунью, дюралюмин – алюминием.
4. Защита протекторами – от латинского защищающий – к детали, находящейся в электролите (в почве всегда есть вода) присоединяют металл с меньшим электродным потенциалом (обычно цинк), который, являясь анодом, и разрушается. Деталь является катодом и не корродирует.
5. Защита неметаллическими покрытиями. Это краски, лаки – они дешёвы, экономят цветные металлы, защищают любые конструкции. Недостаток – трескаются и пропускают воду. Применяются краски масляные и эмалевые.
6. Защита обработкой коррозионной среды. Есть вещества, замедляющие химические реакции и даже прекращающие их (их называют ингибиторами). Когда такой ингибитор вводят в коррозионную среду (например, в воду радиаторов двигателей внутреннего сгорания, теплообменников, компрессоров), то коррозия практически прекращается. Достоинство – ингибитора требуется обычно мало, так как он, сдерживая реакцию, сам в ней не участвует (как и катализатор, который ускоряет химическую реакцию, также не участвуя в ней).
Контрольные вопросы
Какие виды коррозии существуют?
Перечислите основные причины коррозии.
Расскажите о коррозии бетонов.
Какие виды защиты металлов от коррозии существуют?
Какие виды защиты бетонов от коррозии существуют?
Что значит протекторная защита?
Лекция №13
Комплексные соединения. Теория кристаллического поля
План
Координационная теория
Номенклатура комплексных соединений
Методы установления координационный формул.
Теория кристаллического поля.
Устойчивость координационныхсоеинений.
Координационная теория
В молекуле комплексного соединения различают следующие структурные элементы: ион-комплексообразователь, координированные вокруг него присоединенные частицы - лиганды, составляющие вместе с комплексообразователем внутреннюю координационную сферу, и остальные частицы входящие во внешнюю координационную сферу. При растворении комплексных соединений лиганды остаются в прочной связи с ионом-комплексообразователем, образуя почти недиссоциирующий комплексный ион. Число лигандов называется координационным числом (к.ч.).
Рассмотрим ферроцианид калия K4[Fe(CN)6] – комплексное соединение, образующееся при взаимодействии 4KCN+Fe(CN)2=K4[Fe(CN)6].
При растворении комплексное соединение диссоциирует на ионы: K4[Fe(CN)6]↔4K++[Fe(CN)6]4-
Характерные комплексообразователи: Fe2+, Fe3+, Co3+, Cr3+, Ag+, Zn2+, Ni2+.
Характерные лиганды: Cl-, Br-, NO2-, CN-, NH3, H2O.
Заряд комплексообразователя равняется алгебраической сумме зарядов составляющих его ионов, например, [Fex(CN)6]4-, x+6(-1)=-4, x=2.
Входящие в состав комплексного иона нейтральные молекулы оказывают влияния на заряд. Если вся внутренняя сфера заполнена только нейтральными молекулами,
то заряд иона равен заряду комплексообразователя. Так, у иона [Cux(NH3)4]2+, заряд меди x=+2.
Заряд комплексного иона равен сумме зарядов ионов, находящихся во внешней сфере. В K4[Fe(CN)6] заряд [Fe(CN)6] равен -4, так как во внешней сфере находится 4K+, а молекула в целом электронейтральна. Возможно взаимное замещение лигандов во внутренней сфере при сохранении одного и того же координационного числа, например, [Co(NH3)5NO2]Cl2, [Co(NH3)4(NO2)2]Cl, [CoCl (NH3)3(NO2)2]. Заряд иона кобальта равен +3.