
- •Глава 2 структура биосферы 34
- •Глава 3 теоремы экологии 44
- •Глава 4 ресурсология 177
- •Глава 5 214
- •Глава 1 современная экология: наука или мировоззрение?
- •Охрана природы и окружающей человека среды (натурология)
- •Глава 2 структура биосферы
- •2.1 Подсферфы и надсферы
- •2.2 Горизонтальная структура биосферы и иерархия экосистем. Система систем
- •Глава 3 теоремы экологии
- •3.1. Предварительные замечания
- •3.2.1. Сложение систем
- •3.2.2. Внутреннее развитие систем
- •3.2.3. Термодинамика систем
- •3.2.4. Иерархия систем
- •3. 3. Физико-химические и мол екулярно-&иологнческие основы существования живого
- •3.4. Эколого-орга низменные закономерности 3.4.1, Развитие биосистем
- •3.4,2. Закономерности адаптации биосистем
- •3.5. Закономерности системы организм — среда
- •3.5.1. Общие законы функционирования системы организм — среда
- •3.5.2. Частные закономерности в системе организм — среда
- •3.7.1. Ареал и распространение видов в его пределах
- •3.7.2. Изменение особей (популяций) в пределах видового ареала
- •3.7.3. Закономерности распространения сообществ
- •3.8. Законы функционирования биоценозов и сообществ
- •3.8.1. Энергетика, потоки веществ, продуктивность и надежность сообществ и биоценозов
- •3.8.2. Структура и видовой состав биоценозов и сообществ
- •3.8.3. Биоценотические связи и управление
- •3.9.1. Структура и функционирование экосистем
- •3.9.2. Динамика экосистем
- •3.15. Принципы охраны среды жизни, социальная психология и поведение человека
- •3.16. Теоремы экологии как основа управления природопользованием
- •Глава 4 ресурсология
- •4.1. Природа и экономика
- •4.2. Природные ресурсы и ограничения в их использовании
- •Глава 5
- •6.2.1. Господствующие концепции
- •6.2.1. Господствующие концепции
- •6.2.3. Экологизация промышленности
- •6.2.4. Экологизация сельского хозяйства
- •6.2.5. Экологизация лесного хозяйства и промыслов
- •6.2.6. Экологические проблемы транспорта
- •6.2.7. Экологизация городского (муниципального) хозяйства
- •6.2.8. Социально-экологические мероприятия
- •6.2.10. Общая экологизация природопользования
- •9 Н. Ф. Реимерс
- •Глава 7 система потребностей человека (экологический подход)
- •7.1. Особенности экологического подхода к человеку
- •Общие положения
- •Человек и природа
- •3. Экологическая безопасность
- •4. Экологическая политика: алгоритм практических решений
- •Приложение 2. Методология научной (эколого-социально-экономической) экспертизы проектов и хозяйственных начинаний (общие принципы)
- •2. Общенаучные, системные и психологические принципы экспертизы
- •5. Политэкономическая и политэкологическая (или эколономическая) эффективность
2.2 Горизонтальная структура биосферы и иерархия экосистем. Система систем
В системном отношении все перечисленные образования — крупные функциональные части фактически общеземной или субпланетной размерности. Дальнейшее иерархическое членение идет в рамках этих подразделений. Однако фактически более или менее известны лишь крупные экосистемы суши, в значительно меньшей мере океана и, как ни странно, довольно скудна информация о системном членении аквабиосферы. Существует более или менее признанное деление на речные бассейны (например, Дуная или Амура) и на их группы, объединенные ареалами стока внутренних морей и крупных озер (бассейны Азовского, Черного морей,
Байкала, Арала, Каспия и т. д.) или открытых морей и побережий океана (Охотского, Японского морей, западных и восточных частей Северного Ледовитого океана и т. д.). Однако системный экологический анализ этих подразделений нам неизвестен. Тем паче не разработана иерархия экосистем реоаквабиосферы и лимноаквабиосферы. Такая иерархия может быть рассмотрена лишь для теорабиосфеоы и отчасти океанобио- сферы'.
Высший уровень деления террабиосферы — биогеографическое царство. Для следующего более низкого системного уровня пока нет устойчивого названия. Условно в своих работах мы его обозначали для террабио- сферы и океанобиосферы как биогеографическая область (обычно это материковый блок, океан или их крупные части). Можно предложить однословный термин биоорбис (bios — жизнь плюс лат. orbis — область распространения) или с редукцией второго «о» — биорбис. Ведущий системообразующий фактор тут, главным образом, эволюционно-истори- ческие условия и события формирования биоты, ее взаимодействия со средой. Это взаимодействие прежде всего связано с энергетикой процессов, и потому области распадаются на природные пояса (в биосферной системе терминологии — биозоны2), в рамках которых история и форма биотического обмена на суше формируют биомы. Их экологическая специфика и отличие от биозон недостаточно ясна. Возможно, такое расчленение не имеет под собой глубоких оснований и сугубо условно. Внутри биомов, или биозон, направление сукцессионных процессов, определяемых литогенной основой и местными особенностями климата и почвообразования, создает ландшафтные разности, всегда физиономически различающиеся по лито- генной основе и растительности, но фактически по всему комплексу жизни. В упомянутой выше работе (см. с. 30) мы называли эти ландшафтные разности индивидуальным ландшафтом. Однако этот термин настолько многозначен, что может ввести в заблуждение. Поэтому предлагается заменить его в биосферной классификации термином биолокус (от лат. loca — ландшафт).
Широкая взаимосвязь вещественно-энергетических и информационных экологических компонентов (энергии, воды, газов, субстратов с их физико- химическими свойствами, организмов продуцентов, консументов и редуцентов, а также информации), формирующаяся в соседних функционально сопряженных элементарных экосистемах (биогеоценозах), создает биогеоценостические комплексы (типа объединения озерка и лесного колка в западносибирской лесостепи), а сами малые круги биогеоценоти- ческого обмена веществ на основе относительной гомогенности террито-
' Не исключено, что автор недостаточно хорошо знаком с мировой гидробиологической литературой, и именно это лишает его возможности широкомасштабного анализа. Было бы очень полезно, если бы коллеги-гидробиологи его провели. Это позволило бы решить многие спорные вопросы и прежде всего установить степень экологической удаленности водных систем друг от друга, их природную «совместимость» или «несовместимость». Ясно, что это весьма существенно при решении вопроса о строительстве соединительных каналов, а тем более перераспределении вод даже внутри одного речного бассейна. Пока такие работы ведутся экологически вслепую и обсуждаются даже очень сомнительные проекты прямого соединения Черного и Каспийского морей, того же Каспия и Арала, други2 х озерно-морских бассейнов.
2 Термин «биозона» был уже ранее «занят» палеонтологами: они определяют его как совокупность слоев земной коры, соответствующих всему периоду существования какой-либо систематической группы ископаемых организмов (вида, рода и т. п.), т. е. используют его в хронологическом, а не в пространственном смысле. Едва ли такое толкование термина семантически корректно. Скорее «биозона» палеонтологов должна называться «биопластом» или «биохроной» («палеохроной»). Во всяком случае, смешение терминов в учении о биосфере и в палентологии едва ли произойдет.
рии формируют биогеоценозы, или элементарные экосистемы1. Двухсловный термин «биогеоценотический комплекс», безусловно, эфемерен, поэтому предлагается его редуцировать до «биокомплекса» (хотя этот термин уже ранее применялся географами в другом значении, но теперь почти вышел из употребления). Между терминами и понятиями биогеоценоз и экосистема в отечественной литературе нередко ставят знак равенства, подразумевая под последним также элементарное биогеоцено- тическое (биосферное) образование (как упомянуто выше, «клеточку» биосферы) и не придавая слову «экосистема» черты безразмерности (хотя говорят и об экосистемах высших и низших уровней иерархии, что терминологически очень удобно).
Общая иерархия подсистем биосферы и их терминологических обозначений представляется следующим образом (рис. 2.3).
Хотя в тексте для каждого типа экосистем мы выделили лишь ведущие системообразующие факторы, они обязательно присутствуют в полной и обширной совокупности на всех уровнях иерархии: история формирования и эволюция, взаимодействие со средой (прежде всего энергетика этих взаимодействий), круговорот веществ и взаимосвязь экологических компонентов, которая отнюдь не всегда количественно линейна, другие воздействия.
33
1 Эти круги обмена одновременно и формируются биогеоценозами, и формируют их. В данном случае проявляется то же единство, что и при образовании экологических ниш как функционального места вида в экосистеме: без вида нет-и его места в экосистеме.
Таким образом, предполагается, что в биосфере имеется по крайней мере 8—9 уровней относительно самостоятельных круговоротов веществ в пределах взаимосвязи 7 основных вещественно-энергетических экологических компонентов и 8-го — информационного (рис. 2.4).
Несколько слов о схеме на рис. 2.4. Она достаточно известна благодаря публикации в ряде изданий, в том числе популярных1, и возникла как усовершенствование широко принятой схемы В. Н. СукачеваI. Предлагаемый здесь несколько модернизированный вариант схемы взаимоотношения экологических компонентов трудно адаптировать только лишь для литобиосферы. Субстратом в аэробиосфере и гидробиосфере служит вода (газы, видимо, принципиально не могут служить субстратом для жизни). Спорным может быть включение в состав экологических компонентов энергии, приходящей на Землю в основном извне от Солнца, и тем более информации, как внутренних взаимосвязей, возникающих в результате физико-химических (через обоняние) или также энергетических воздействий, воспринимаемых организмами как закодированное сообщение о возможности более мощных (часто даже смертельных) воздействий на
' Н. Ф. Р е й м е р с, Ф. Р. Ш т и л ь м а р к. Особо охраняемые территории. М.: Мысль, 1978. С. 108. Н. Ф. Реймерс. Азбука природы: Микроэнциклопедия биосферы. М.: Знание, 1980. С. 84. Он же. Основные биологические понятия и термины: Книга для учителя. М.: Просвещение, 1988. С. 40. Он же. Природопользование. М.: Мысль, 1990. С. 240. Он же. Популярный биологический словарь. М.: Наука, 1991. С. 224 (наиболее отработанная схема) и др.
2 В. Н. С у к а ч е в. Основные понятия лесной биогеоценологии//Основы лесной биогео- ценологии. М.: Наука, 1964. С. 24. Он же. Избранные труды. М.: Наука, 1972. С. 331.
них со стороны других организмов или факторов абиотической среды и вызывающих у организмов ответную реакцию. Можно ли распространять понятие информации на абиотические компоненты, также иногда реагирующие на внешние воздействия с неадекватной приходящему импульсу силой (например, триггерный эффект в геофизических процессах), остается неясным.
Включение энергетики как экологического компонента достаточно обосновано тем, что все процессы в природе по своей основе всегда энерге- тические1. Экологически переработка информации — также неотрывное свойство живого, эволюционировавшее чрезвычайно активно. Собственно, понятие ноосферы, ставшее сейчас весьма популярным, особенно среди части философов, есть выражение логической доминанты информации во всей совокупности экологических компонентов биосферы.
В современных экологических учебниках и словарях (например, в уже упоминавшемся Экологическом энциклопедическом словаре И. И. Дедю) обычно приводят классическую схему экологических компонентов В. Н. Сукачева. Высоко ценя авторитет своего учителя и крестного отца в науке (В. Н. Сукачев был рецензентом моей первой студенческой печатной работы), хотел бы все же отметить, что в его схеме биогеоценоза выпал водный компонент (воду нельзя включать в климатоп и тем паче в атмосферу) . Кроме того, зооценоз — в значительной мере условное понятие (сообщество, но не экологический компонент), а микробиоценоз, очевидно, состоит как из продукцентов-хемотрофов, так и из редуцентов. В настоящее время грибы считаются особым систематическим царством и они оказываются за скобками схемы В. Н. Сукачева. Не совсем понятно упорство, с которым авторы не замечают этих изъянов схемы, возникших с ходом развития знания. Ее усовершенствование отнюдь не умаляет заслуг такого классика науки, как В. Н. Сукачев.
Глобальные, региональные и местные круговороты веществ незамкнуты и в рамках иерархии экосистем частично «пересекаются». Это вещественно-энергетическое и отчасти информационное «сцепление» обеспечивает целостность экологических надсистем вплоть до биосферы. Видимо, наиболее (хотя и относительно) биотически независимы природные системы океана и суши. Однако их геосистемы как биотопы очень тесно взимо- связаны. Свидетельство тому климатические и другие геофизические и отчасти геохимические взаимодействия между сушей и океаном. Имеется и биотическая взаимосвязь через организмы, проходящие часть цикла своего развития в воде, а также организмы подземных и океанических вод. Однако в основном все-таки взаимодействуют биоты аквабиосферы и маринобиосферы, а не собственно суши и океана: гидробиосфера и геобиосфера в значительной мере автономны как биотические образования. Геохимический сток с суши в океан практически однонаправлен, если не считать довольно слабого возврата солей. Эволюционно гидробиосфера и геобиосфера развиваются практически независимо друг от друга.
Для биосферы в целом на ее входе имеется энергия, земное и космическое вещество, на выходе — осадочные биогенные породы и уходящие в космос газы. Полная «безотходность» природных систем — настолько очевидное заблуждение недавнего прошлого, что о ней говорить здесь подробнее нет нужды.
1 См. очень интересную, незаслуженно забытую статью: Г. Ф. Хильми. Современное
состояние научных концепций биосферы//Методологические аспекты исследования биосферы. М.: Наука, 1975. С. 91 — 100.
2«« 35
Выше уже вскользь упоминалось, что педосферу нельзя рассматривать как абсолютно самостоятельное системное образование, и что это лишь своеобразная синузия в составе фитосферы или экотон на грани терра- биосферы с литобиосферой. Действительно, почва в собственном смысле слова образуется лишь при наличии биоты, преобразующей абиотический субстрат в биокосное вещество, по В. И. Вернадскому, «которое создается одновременно живыми организмами и косными процессами» и является «закономерной структурой из живого и косного вещества»I. Без растительности почва быстро разрушается, хотя чистые пары без высших растений (но с микроорганизмами и богатой фауной) позволяют ей восстановить плодородие. Этот факт как будто противоречит приданию почвенным образованиям более низкого, чем экосистема, иерархического ранга (один из признаков экосистемы — саморегуляция и самовосстановление). Однако почва всегда «надстраивается» растительностью, и если этого не происходит, возникает устойчивое опустынивание (как минерализация). Можно сказать, что микробиально-консументное восстановление плодородия на чистых парах — это сукцессионная фаза, предшествующая «надстройке» целого биогеоценоза, некое «приглашение» для высшей растительности. Это еще одна иллюстрация того, что биосфера и ее подразделения — место, где развивается жизнь (экотоп, геосфера, экосфера для биоты) и одновременно живое в своей общей совокупности.
Если иерархию таких комплексных биосферных образований мы только что рассмотрели, то, видимо, требуется анализ и иерархий внутренних составляющих экосистемы. Такая попытка уже была нами сделана в цитировавшейся выше работе «Системные основы природопользования». Новых крупных разработок и обобщений по иерархии системных образований я не знаю.
К удивлению, идея «системы систем», как периодической таблицы всего сущего, не вызвала никакой ответной реакции ученого мира — ни позитивной, ни негативной. Очевидно, на нее не обратили внимания по двум причинам: из-за публикации в малотиражном философском издании и из-за того, что экологической теорией природопользования в мире занимаются лишь немногие исследователи, а языковый барьер не позволил, например, Р. П. МакинтошуII, обсуждавшему близкие проблемы, познакомиться с упомянутой работой.
Напомним, что в «системе систем» мы рассматривали два ряда биотических образований — экобиосистемный и биоценотический, которые, интегрируясь во времени и в пространстве с абиотическими условиями среды, дают вышеприведенный экосистемный ряд, заканчивающийся биосферой как сочетанием биоты планеты с преобразуемой ею средо£ обитания. Здесь мы внесем некоторые коррективы в ранее опубликованные схемы и сделаем дополнительные разъяснения (табл. 2.1).
Приведенные в табл. 2.1 названия, как и ранее использовавшиеся описательны, а не строго терминологичны. Биосистемный ряд не требуе- комментариев, кроме двух поправок к принимавшейся нами ранее схеме 1) в этом ряду должна стоять не особь как сложное, фактически много видовое индивидуально-консорционное образование (например, в случа! относительно крупных животных с кишечной флорой и т. п.), а собствен» индивид, организм как чисто генетическая структура, особая часть, дискрет «живого вещества» В. И. Вернадского; 2) ряд фактически заканчивается популяцией, а не видом. Последний выступает как эволюционно- историческое объединение генетически довольно разнородных популяций. В каждом конкретном месте вид представляет определенная популяция. Вид в данном случае принимается как отвлеченно-обобщающее понятие из таксономической иерархии (вид, род, семейство и т. д.). Сама же популяция состоит из многих микропопуляций — фенов, демов и т. п., представляющих один уровень биосистемной иерархии, и в своем разнообразии (в «третьем измерении» таблицы) составляющих закономерные ряды, обобщаемые законом гомологических рядов и наследственной изменчивости Н. И. Вавилова.
Экобиосистемный ряд начинает особь в приведенном выше понимании. Дальнейшее системное усложнение достаточно очевидно. Переход от популяции как генетического образования к ее экологическому аналогу, как кажется, не требует особых разъяснений.
В биоценотическом ряду уже нет индивидов и особей как таковых. Этот ряд начинается с групповых образований — фитоценов и зооценов как функциональных представителей ценозов, объединенных в табл. 2.1 под названием биоценов. Эти последние формируют синузии, а те в свою очередь распадаются, и наоборот, агрегируются в популяционные кон- сорции. Эта особенность — с одной стороны объединение, а с другой разъединение — характерна для многих биотических образований. Био- геоценотические консорции формируют такие же парцеллы, в свою очередь интегрирующиеся в биоценозы, называемые ботаниками ассоциациями. Отдельные биоценозы, сочетаясь, складывают биоценомические типы, взаимодействие которых образует региональные биоты (в ботанике обычно с доминированием какой-то растительной формации и типа сукцессионных процессов). Последние слагают биомы в чисто биологическом, а не эколо- го-географическом понимании («биобиомы»), как биоценотические образования, имеющие свою эволюцию, но условно рассматриваемые вне факторов среды.
Экосистемный ряд подвергнут в тексте анализу выше.
«Система систем» циклична в том смысле, что теоретически вещество Галактики вне своих сгущений есть собрание элементарных частиц, а они, напротив, формируют всю материю мира. Как и любая подобная таблица, она позволяет прогнозировать существование промежуточных структур. Поскольку имеются периодическая система элементов и подобная ей система гомологических рядов Н. И. Вавилова, вероятно, существуют аналогичные закономерности для всех членов «системы систем» (по отношению к нашей схеме они расположены как ветвистые деревья в третьем по отношению к таблице измерении). Специалистам-теоретикам их стоит поискать...
Приводимая схема, как и все другие подобные, кажется слишком умозрительной и несколько даже иррациональной, поскольку каждое из образований как бы выступает в двух «лицах»: индивид и особь, репродуктивная группа и «семья» (первая как механизм рождения потомства, вторая как группа, противостоящая другим подобным и одновременно входящая в их сочетание в рамках популяционной парцеллы) и т. д. Но в том-то и смысл подобной редукционистско-насильственной дезинтеграции, чтобы показать: природные системы полифункциональны, многолики, к ним нельзя подходить как к одноуровневым техническим гайкам и болтам. На биологическом и экологическом уровне развития материи все намного сложнее, и любая самая прагматическая задача должна решаться
Таблица 2.1.
Подуровни
Уровни
Отдел
пежиной природы ГеокосмнческиА 3
11ш>
ровни
Геофизики-
геохимический 2
I. Атомарный
Элементарно-системный
(атомарно-молекулярный)
2.
Молекулярно-кри- сталлический
II
Первично-системный
III
Органнзменно- групповой
IV
Ассоциационный
V
Блоково-экосистем- ный
VI
Планетарный
Первично-ассоциативный
Вторично-ассоци- ативный
Организменный
Популяционно- групповой
Ценозный
Консорционный
Биогеоценоти- ческий
Биогеоблоковый
Геоблоковый
Фазово-плане- тарный
Планетарно- космический
Галактический
Элементарное гео- физико-геохимическое образование Местный геофизи
ко-геохимический комплекс
Индивидуально- ландшафтная геофн- зико-геохимическая система
Зональная геофи- зико-геохимическая система
Материк Геофизико-геохн-
мическая разновидность
Материковая пли- Геофизико-геохн- та мическая область
Суша и мировой Геофизико-геохн- океан мический пояс
Геосфера Физико-химиче
ская ободочка
Космическое тело Космическая система
Галактика
Вселенная (ее вещество и антивещество)
Система систем
я ряды иерархии
Отдел жнпой природы
Корпускулнрио- геоти'ческнй I
Виоскстемный 4
Экобиосистемный
5
БиоцгнотмческиА в
ЭкоснстемиыА
7
Элементарная частица Атом
Молекула Агрегат молекул Кристалл Минерал («вещество» — вода, газы и т. п.)
Геологическая порода Геоформаиия Геома
Органелла
Клетка Ткань
Орган (как система)
Система органов
Индивид Репродуктивная группа
Дем (или мик- ропопуляиия) Популяция
Особь
«Семья» (и семья)
Популяцнон- ная парцелла
Экологическая популяция
Трофический уровень - Пищевая цепь Трофическая сеть
Экологическая пирамида
Биоцены
Синузия Популяци- онная консор- ция
Биогеоиено- тическая пар целла Биоценоз
Биоценомн- ческий тип
Региональная бнота
Биогеоценоз (экосистема)
Биокомплекс
Биолокус
Бнозона
Биоорбио
Царство
Подсфера биосферы (террабно- сфера и др.) Биосфера
с учетом этой сложности, еще более возрастающей при переходе к эколо] человека как социального существа.
Задача этого раздела не только отвлеченно показать, как устро< биосфера и сколь многолики и множественны направления потоков щества и энергии в ней (а, следовательно, взаимосвязи между структура и подсистемами), но и в том, чтобы обратить внимание на те структу которые в наши дни подвержены антропогенному воздействию и поте заслуживают внимательного изучения и мониторинга, а в ряде случ; поддержки, управления и воспроизводства. Это тем более важно в CBJ с тем, что биосфера — целостное системное образование, «сцеплен] подсистем, внутри которого многое еще известно недостаточно или во неизвестно. Те пока еще не очень четкие штрихи, которые проведены Hai должны наметить объекты будущих исследований, порой весьма трудо> ких и сложных. Однако зная, что изучать, делать это значительно лег чем бродить в потемках бесструктурного целого, называемого биосфер и строить обобщения на зыбком песке поверхностного взгляда на «черк ящик» этого всепланетного образования.
Сложная структура биосферы и экосферы планеты требует скорей 1 го познания. Уже происходят процессы антропогенного разрушения г бальных совокупностей и взимосвязей живого и неживого. «Экологичеа инфаркт» и «экологический апокалипсис» стали не столько эмоционалы алармистскими пугалами, сколько возможной реальностью, хотя и отв гаемой многими сугубо оптимистично настроенными учеными и поли ками. Не впадая в «экологическую панику», тем не менее следует призна что проблемы экологии приобрели жизненно важное значение. Вне ши] ких обобщений, знания четких «правил игры» едва ли можно расчитыв; на успех их решения. «Правила игры» задает нам природа. К их обсуж, нию мы и приглашаем в следующей главе книги.