
- •Глава 2 структура биосферы 34
- •Глава 3 теоремы экологии 44
- •Глава 4 ресурсология 177
- •Глава 5 214
- •Глава 1 современная экология: наука или мировоззрение?
- •Охрана природы и окружающей человека среды (натурология)
- •Глава 2 структура биосферы
- •2.1 Подсферфы и надсферы
- •2.2 Горизонтальная структура биосферы и иерархия экосистем. Система систем
- •Глава 3 теоремы экологии
- •3.1. Предварительные замечания
- •3.2.1. Сложение систем
- •3.2.2. Внутреннее развитие систем
- •3.2.3. Термодинамика систем
- •3.2.4. Иерархия систем
- •3. 3. Физико-химические и мол екулярно-&иологнческие основы существования живого
- •3.4. Эколого-орга низменные закономерности 3.4.1, Развитие биосистем
- •3.4,2. Закономерности адаптации биосистем
- •3.5. Закономерности системы организм — среда
- •3.5.1. Общие законы функционирования системы организм — среда
- •3.5.2. Частные закономерности в системе организм — среда
- •3.7.1. Ареал и распространение видов в его пределах
- •3.7.2. Изменение особей (популяций) в пределах видового ареала
- •3.7.3. Закономерности распространения сообществ
- •3.8. Законы функционирования биоценозов и сообществ
- •3.8.1. Энергетика, потоки веществ, продуктивность и надежность сообществ и биоценозов
- •3.8.2. Структура и видовой состав биоценозов и сообществ
- •3.8.3. Биоценотические связи и управление
- •3.9.1. Структура и функционирование экосистем
- •3.9.2. Динамика экосистем
- •3.15. Принципы охраны среды жизни, социальная психология и поведение человека
- •3.16. Теоремы экологии как основа управления природопользованием
- •Глава 4 ресурсология
- •4.1. Природа и экономика
- •4.2. Природные ресурсы и ограничения в их использовании
- •Глава 5
- •6.2.1. Господствующие концепции
- •6.2.1. Господствующие концепции
- •6.2.3. Экологизация промышленности
- •6.2.4. Экологизация сельского хозяйства
- •6.2.5. Экологизация лесного хозяйства и промыслов
- •6.2.6. Экологические проблемы транспорта
- •6.2.7. Экологизация городского (муниципального) хозяйства
- •6.2.8. Социально-экологические мероприятия
- •6.2.10. Общая экологизация природопользования
- •9 Н. Ф. Реимерс
- •Глава 7 система потребностей человека (экологический подход)
- •7.1. Особенности экологического подхода к человеку
- •Общие положения
- •Человек и природа
- •3. Экологическая безопасность
- •4. Экологическая политика: алгоритм практических решений
- •Приложение 2. Методология научной (эколого-социально-экономической) экспертизы проектов и хозяйственных начинаний (общие принципы)
- •2. Общенаучные, системные и психологические принципы экспертизы
- •5. Политэкономическая и политэкологическая (или эколономическая) эффективность
2. Общенаучные, системные и психологические принципы экспертизы
Общие правила научной экспертизы проектов кратко сводятся к установлению соответствия следующим законам развития природы и общества: принципам оптимальности и достаточности, размерности природно-ресурсного потенциала, правилам интегрального ресурса и взаимодействия экологических компонентов, законам природных и социальных ограничений, общеэкономическим законам общественного развития и т. п.I Основные из этих законов, принципов и правил перечислены ниже.
2.1. Группа законов оптимальности.
Правило интегрального ресурса (разд. 3.14): конкурирующие в сфере использования природных систем (природных комплексов, экосистем) отрасли хозяйства неминуемо наносят ущерб друг другу тем сильнее, чем значительней они изменяют совместно эксплуатируемый экологический компонент (энергия, вода, атмосфера, почво-субстраты, растения-продуценты, организмы консументы и редуценты) или всю систему (комплекс) в целом. При этом разрушение биоты ради получения, например, минеральных ресурсов чревато дальнейшей невозможностью жизни человека в данном регионе. Особенно заметно это на примере малых народов, ведущих традиционное хозяйство. Разрушение природно-ресурсного потенциала ради ведомственных или «общегосударственных» целей ведет к неминуемому вымиранию этих народов, поскольку теряется основа их существования.
Правило меры преобразования природных систем (обобщение закономерностей разд. 3.14 и 3.15): в ходе эксплуатации природных систем нельзя переходить некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания (самоорганизации и саморегуляции). Несоблюдение этого правила ведет к опустыниванию северного (холодного) или южного (аридного) типа.
Размерность этого требования — очень сложный вопрос. Она зависит от географического места, степени устойчивости и надежности природной системы, способности ее противостоять природным цепным реакциям и естественной изменчивости природных условий. В маргинальных и наиболее уязвимых регионах, как правило, коренным образом преобразовывать допустимо не более 1 % площади экосистем, находящихся в природно-естественном состоянии. Площадь коренным образом измененных экосистем в наиболее благоприятных условиях может достигать 40%, после чего ущербы возрастают (см. главу 5). Экспертные оценки допустимых площадей преобразования по ландшафтным зонам СССР см. на рис. 5.1.
Закон оптимальности (разд. 3.2.1) гласит, что с наибольшей эффективностью любая система (в том числе природный и хозяйственный объект) функционируют в некоторых пространственно-временных пределах, выход за которые обесценивает данный объект как подсистему более крупной системы или ведет к разрушению этой крупной системы. Закон оптимальности касается как индивидуального размера единичной системы, так и числа однородных систем.
Оптимальные размеры не могут быть определены общими Количественными показателями. Минимальный размер таков, при котором система еще не теряет своих функций. То же касается максимального размера, но тут важны расходы на внутрисистемную организацию и межсистемные связи. Гигантизм вызывает слишком большие затраты на саморегуляцию внутри системы, что делает конкурентоспособными малые аналоги с теми же или с другими, но близкими принципами действия. К тому же при гигантизме растут внешние ущербы среде (экономические, социальные и экологические), что также повышает конкурентоспособность альтернативных устройств. Так, бесплотинные ГЭС постепенно, видимо, будут вытеснять гигантские станции с высокими плотинами. Малые солнечно- водородные устройства сделаются вполне конкурентоспособными и т. д. В каждом конкретном случае необходима оценка и моделирование оптимальных размеров, сравниваемых с заложенными в проекте.
Закон необходимого разнообразия (разд. 3.2.1): система не может сформироваться из абсолютно одинаковых элементов или на принципе монополизма. Любая (природная, социальная, экономическая) монокультура не обладает свойствами самоподдержания за пределами индивидуального срока существования. Среднеазиатский хлопок как монокультура уже привел и приведет к еще более крупномасштабной экологической катастрофе. Тюменские нефтегазовые промыслы при одностороннем развитии не только разрушают природу севера Западной Сибири, но и станут после исчерпания запасов нефти и газа зоной социально-экономической пустыни. Самовосстановление природы может произойти в этих местах за 100—150 лет, если изменения не окажутся необратимыми. Такая необратимость на Ямале возникает из-за того, что льдосодержащие грунты (в них до 80 % льда) могут разрушиться, и полуостров за несколько десятилетий способен сначала превратиться в цепь островов, а затем исчезнуть как геологическое образование, уйдя под воды Северного Ледовитого океана.
Закон (принцип) увеличения степени идеальности (разд. 3.2.1): гармоничность отношений между частями системы историко-эволюционно возрастает (что ведет к миниатюризации изделий и хозяйственных объектов). Новый объект нарушает сложившуюся гармонию, что требует учета. Наблюдавшееся стремление к гигантизму всех проектов приводило к глубокой дисгармонии региональных систем природы и общества. Результатом стали диспропорции в хозяйственных и экологических механизмах.
Суммирование пп. 2.1.1—2.1.5 дает критерий принципа достаточности (вместе с учетом ограничивающих факторов — п. 2.2) — см. п. 2.3 и разд. 3.15.
2.2. Группа ограничивающих факторов.
Закон соответствия между уровнем развития производительных сил и природно-ресурсным потенциалом (разд. 3.14): развитие производительных сил остается относительно постоянным до момента резкого истощения природно- ресурсного потенциала, вслед за чем следует революционное (относительно ускоренное) их изменение.
Очень существенно уловить переломный момент в формах использования как глобального, так и регионального природно-ресурсного потенциала. Например, рекреационные ресурсы в наши дни начинают лимитировать общественное развитие, а потому стремительно дорожают. Варианты промышленного освоения (например, Горного Алтая) выглядят в этом свете ущербными, а рекреационного — предпочтительными. Туризм в Кении, основанный на встречах со слонами, приносит доход, в 10 раз превышающий потенциальную стоимость бивней животных. Социальное лесоводство получает преимущества перед добычей древесины и кое-где в 3—26 раз выгоднее ее.
Правило взаимодействия экологических компонентов (см. закон внутреннего динамического равновесия, разд. 3.9.1): изменение количества или качества одного из экологических компонентов неминуемо ведет к качественно-количественным изменениям других экологических компонентов или динамических свойств природной системы. При этом соотношение меняется не строго пропорционально, а, как правило, скачкообразно. Хороший пример — сверхэксплуатация водных ресурсов Средней Азии.
Закон сукцессионного замедления (разд. 3.9.2): насыщающаяся система имеет тенденцию к замедлению количественного роста и продуктивности, если не имеет мощного входа и выхода («омоложение» на своей территории или в составе надсистемы). Сформулированная закономерность справедлива для любых, в том числе социально-экономических систем.
Нередко получаемые от реализации проекта результаты оказываются значительно скромнее ожидавшихся из-за действия этого закона. Иногда бывают получены даже отрицательные результаты. Например, интенсивное применение ядохимикатов привело к выработке у вредителей устойчивости к ним, а удобрение полей сверхбольшими дозами минеральных удобрений не вызвало увеличения урожайности и ухудшило качество получаемой сельскохозяйственной продукции. И те, и другие вещества, загрязняя среду и продукты питания, вызвали ущербы и повысили рыночную цену «биологического» урожая, выращенного с минимальным применением химических веществ.
Правило (неизбежных) цепных реакций «жесткого» управления природой (разд. 3.14): возведение технических объектов, меняющих природные процессы, чревато природными цепными реакциями, значительная часть которых оказывается экологически, социально и экономически неприемлемыми в длительном интервале времени:
Наиболее известны те примеры цепных реакций техногенного изменения природной среды, что следуют за строительством ГЭС и вырубкой лесов на больших территориях. В первом случае перегораживающие реку плотины вызывают длинную цепь изменений как в природе, так и в жизни людей, их хозяйстве: затопление и подтопление земель, изменение скорости водотока его самоочищающей способности, величины твердого стока реки, кавитационное омертвление воды, проходящей через турбины, изменение ее химического состава, невозможность миграции рыб (даже если они идут через рыбоподъемники, то попадая в неподвижную воду водохранилища, теряют ориентировку, так как движутся только против течения), исчезновение ряда видов живого, переселение людей, смена мест водозабора, перемены в водном и сухопутном транспорте (часто бывают залиты части дорог), в интенсивности связей между людьми, оказавшихся по разные стороны водохранилища, и т. д. и т. п. В то же время часто происходит улучшение водоснабжения и рекреационных возможностей. При вырубке лесов изменяется водный сток, гидрогеологический режим водотоков, химический состав вод, ветровой и климатический режимы местности, видовой состав растений и животных, характер промыслов, рекреации и т. п. Поскольку все эти изменения захватывают многие десятилетия, они меняют эколого-социально-экономиче- скую обстановку практически безвозвратно.
2.2.5. Принцип старого автомобиля, или «помни о смерти» (разд. 3.12): технические устройства (и любые системы) со временем (старением) теряют эффективность, поэтому расчеты должны вестись с учетом увеличения эксплуатационных затрат и того, что будет, когда устройство (система) выйдет из строя. Экономические и другие потери при строительстве следует суммировать с потерями при демонтаже, см. п. 3.1.
2.3. Принцип разумной достаточности и допустимого риска (разд. 3.15): размерность и число аналогичных объектов, воздействующих на среду жизни, должно быть не больше и не меньше того количества, которое обеспечивает сохранность этой среды и свободный маневр в случае изменения обстоятельств. Риск, связанный с осуществлением проекта, не должен превышать принятого норматива. Несоблюдение этого принципа опасно экологически, ущербно социально и разорительно экономически. Притом увеличение риска, как правило, идет экспоненциально. Так, расширение монокультуры или любой другой выход за пределы группы правил оптимальности (правила 1 и 10 процентов и другие — см. главу 3) всегда в конечном итоге ведет к катастрофе. Увеличение числа АЭС мира до более 400 привело к недопустимому риску числа крупных аварий: до одной на 5 лет.
Количество высоких плотин на больших реках мира достигло 2200. Это сделало риск вероятного разрушения одной плотины равным одному событию в 5 лет. В рамках бывшего СССР построено 200 таких плотин. Вероятность разрушения достигла одного события в 50 лет. Со старением плотин теоретическая частотность аварий возрастает. Риск, математически выраженный формулировкой «одно событие за 50 лет», не означает равномерности чередования этих событий. Могут произойти несколько аварий за короткое время. Обычно эти события вызывают резко негативную общественную реакцию. Подобные проекты делаются социально нерентабельными (неприемлемыми), наступает их моральная дряхлость и затем отмирание.
Примерно то же произошло с ростом производства фреонов, их воздействием на озоновый экран планеты.
Однако глобальные угрозы количественно предсказать труднее, чем риск неоправданного роста числа конкретных объектов. Если для АЭС и плотин на реках легко рассчитать теоретическую вероятность аварии (если, конечно, стоять на почве реальности, а не эйфории или «экологического максимализма»), то меру воздействия массы технических устройств или осуществленных проектов на биосферу Земли, ее подсферы и экологические компоненты (энергетику, газы, жидкость, почво-субстраты, продуценты, консументы и редуценты) определить очень трудно. Это связано с буферностью природных систем, внезапным развитием событий в них по экспоненциальным законам, а главное, с ощутимым недостатком информации. Так, нельзя точно указать какая концентрация СОг и других атмосферных примесей приведет к катастрофическому изменению климата на планете. Строительство плотин на реках разрывает связи между экосистемами Мирового океана и континентальных вод. Когда-то это может вызвать неустранимую экологическую катастрофу. Предсказать ее сроки невозможно.
В связи с этим приобретают особое значение упомянутые правила 1 и 10 процентов. Первое утверждает опасность изменения энергетики природных систем даже в пределах ниже 1 % от общей энергетики системы. Второе предупреждает о недопустимости изменения вещественных параметров систем более чем на 10 % (фактически разово между 5 и 25—27 %, в многолетнем режиме менее 10 % — см. разд. 3.11, главу 4 и приложение 1).
Исходя из подобных превентивных нормативов, использование более 80 %
стока рек Средней Азии на хозяйственные нужды заведомо гибельно. На момент проведения планово-прогнозных расчетов развития региона был известен норматив рыбного хозяйства, не допускающий снижения водности рек более чем на 5 %. Игнорирование этого норматива — на совести проектировщиков и плановиков. Нынешний результат — экологическая катастрофа в бассейне Аральского моря.
2.4. Группа информационных и психологических ограничений.
2.4.1. Принцип удаленности события (разд. 3.15): явление, отдаленное по времени и в пространстве, кажется менее существенным, а предупреждение о нем малозначащим. Практическим следствием действия принципа удаленности события служит то, что обычно упускают момент разумной достаточности, и затраты на ликвидацию последствий техногенных изменений оказываются выше общественно приемлемых. Возникающие убытки часто очень значительны. Однако это не приводит к учету прежних уроков и ошибок, поскольку не наступает ответственность за них: время прошло, ошибки признаны, новые затраты и ущербы вошли в цену продукции и другие платы, получаемые от населения. При значительном развитии экономики и высоком уровне жизни возникающие ущербы не вызывают заметного снижения того и другого. Но при таких низких значениях этих параметров, как у нас в стране, действие принципа удаленности события очень разорительно. Поэтому его следует тщательно учитывать при экспертизе проектов и хозяйственных начинаний.
2.4.2. Принцип регулярных ошибок моделирования (см. принципы инстинктивного отрицания признания, разд. 3.15): психологически значимым факторам придается излишний вес, что при составлении программ и моделей ведет к искажению результатов в сторону обоснования первичной гипотезы, принятой программистом (он при реализации программы на ЭВМ обычно получает то, что хотел, а не объективный результат). Модели следует тщательно проверять.
2.4.3. Принцип неполноты информации (неопределенности): информация при проведении хозяйственных акций в природе всегда недостаточна для априорных суждений о всех возможных результатах осуществляемого мероприятия (разд. 3.15). Связано это с исключительной сложностью природных систем. Для ослабления действия этого неустранимого изъяна требуется многовариантная проработка прогнозов—по методу географических аналогий, на натурных моделях, с помощью логического и математического моделирования, на исторических аналогах и т. д. При этом необходим учет действия принципов удаленности события (п. 2.4.1) и регулярных ошибок моделирования (п. 2.4.2), а также частой ошибки актуализма, предполагающего, что процессы геологического прошлого адекватны современным, искаженным антропогенной деятельностью и идущим в ином масштабе времени. Например, Телецкое озеро не может быть географическим аналогом предполагаемого Катунского водохранилища. Формирование озера шло в течение многих тысячелетий (возможно, оно было изначально мертвым из-за ртути), в то время как водохранилище образуется за короткий ряд лет. Также неверен климатический прогноз, базирующийся на геологическом прошлом Земли. Тогда было иное состояние биосферы планеты, иные поглотительные способности, источники поступления газовых примесей и т. д.
2.4.4. Принцип обманчивого благополучия (разд. 3.15): успех природо- пользовательского мероприятия становится ясным лишь после того, как сформируется цепь сопутствующих природных реакций (п. 2.2.4) в ответ на данное мероприятие и на их регионально-глобальную совокупность. Вначале получают, как правило, нескомпенсированный эффект, а не действительно объективный результат. В связи с этим всегда требуется глубокая прогнозная (логическая и модельная) проработка, в том числе связей между хозяйством и природой.
Ленинградская дамба — необходимое сооружение для защиты города от наводнений, теоретическая высота которых возрастает с ростом уровня мирового океана. Однако ее строительство до возведения очистных сооружений привело к недопустимому, все время растущему загрязнению устья Невы. Нельзя считать это прямой «виной» строительства дамбы. Если же перераспределение твердого стока Невы из-за возведения дамбы даст серию негативных результатов — это будет реальной угрозой, хотя и отдаленной во времени.
3. Показатели эффективности (экономические составляющие)
Анализ размера капиталовложений и скорости их амортизации с учетом существующих нормативов и ограничений всех остальных блоков матрицы. Экономичность следует рассматривать в максимально широком спектре альтернатив с учетом их динамики во времени. Обязателен расчет расходов на демонтаж (например, для АЭС — до 40 % первоначальных капиталовложений) и весь ресурсный цикл (п. 1.5).
Особенно важен учет изменения цен во времени. Существующие тенденции оценки ценности природных ресурсов могут измениться даже на обратные, но, как правило, лишь в относительно коротком интервале времени. В длительном интервале времени природные ресурсы в целом делаются экономически и социально дороже (разд. 3.12 и 3.14). Но возможны кратковременные падения цен, особенно на конечные продукты, получаемые из того или другого ресурса. Например, безводный аммиак, получаемый из природного газа, на мировом рынке упал в цене с конца 70-х гг. примерно в 5 раз. Но в длительном времени как энергоноситель и химическое сырье природный газ будет дорожать.
Дорожают природные ресурсы и в соответствии с их географическим положением (дифференциальная рента) как сами по себе, так и в связи с иным соотношением в интегральном ресурсе (разд. 3.14). Очевидно, экономически совершенно бесперспективно интенсивное освоение Крайнего Севера. Затраты там выше общественно приемлемых на данное и обозримое время.
Все экономические расчеты необходимо делать, исходя из концепции интегрального ресурса (природного, трудового и материального (разд. 3.14) с учетом современных и потенциальных ущербов и выгод для других отраслей хозяйства (п. 1.2—1.5). Как правило, такие расчеты в проектах не сделаны. В связи с этим они полностью ложатся на плечи составителей ОВОС и экспертов, натурно оценивающих проект.
Эксплуатационные затраты с учетом всего цикла производства от момента получения сырья до момента включения образующихся отходов в естественные природные круговороты веществ и потоки энергии. Обязателен учет не только цены сырья, но и оценки используемых природных ресурсов, традиционно относимых к природным условиям (климат, вода, воздух и т. п.). Отсутствие реальной цены на эти условия может оказаться временным, поэтому необходим прогноз на глубину срока функционирования предполагаемого объекта (иногда это 100 лет и более). Доминанта в оценке незаменимых ресурсов — блок экологической цены (п. 3.3).
Экологическая цена — это эколого-экономические издержки текущего и перспективного времени, экологическая рента, экологические ущербы от использования ресурсов с учетом сопутствующих потерь. В случае воздействия на легко исчерпаемый невосстановимый и принципиально незаменимый ресурс экологическая цена стремится к бесконечности (например, при воздействии на даже теоретически невосстановимый вид живого, при угрозе деструкции крупных экосистем, при изменении среды жизни сверх генетических возможностей людей к адаптации, при потере особо ценных бальнеологических ресурсов и т. п.). Так, в затраты на охрану среды (без учета всегда сохраняющихся ущербов) в современной теплоэнергетике входят 23—40 % увеличения капиталовложений для осуществления очистки и от 3,2 до 8,7 % стоимости добычи топлива (для угля) на шахтах. Суммы эти увеличиваются из-за необходимости улавливать СОг, но сокращаются при производстве продукции из улавливаемых отходов.
Крайне сложно оценить теряемые невосстановимые и особенно незаменимые ресурсы. Часто они не имеют эквивалентных социальных и экономических оценок. Кроме того, хотя такие четкие оценки и отсутствуют, но они непрерывно потенциально растут. Например, «цена» вида живого с уменьшением их числа резко возрастает. В настоящее время условный экономический и социальный денежный эквивалент «цены» вида (общественно оправданных затрат на его сохранение) равен примерно 20 млн долларов (по его значимости в надежности систем биосферы). Оценка деструкции экосистем может исходить из рыночной цены опустыниваемой площади или из падения ее потенциальной хозяйственной производительности (степени ее «экономического опустынивания»). Все рекреационные блага пока можно оценивать по затратам на их компенсацию, но если они незаменимы (например, туберкулезные санатории типа Чемальского на Катуни), такой расчет некорректен. Здоровье и жизнь человека трудно оценить в экономических категориях, но, тем не менее, необходимо. Исходя из международной практики, условно потеря трудоспособности одним человеком в экономическом выражении утраивается (считается, что двое должны его содержать). Кроме того, учитываются социальные издержки (дурной пример, стресс и т. п.). Эксперт - но потерю одной незаменимой лечебной путевки (исходя из того, что ее реализация могла сохранить человеку трудоспособность) можно оценить примерно в 150 тыс. р.I Однако исходить нужно не из пропускной способности существующего курорта, а из потенциальной емкости курортного места. Для упомянутого Чемальского курорта на Катуни, имеющего общую потенциальную емкость в 15 тыс, человек в год его оценка составит: 150-10 р.Х 15- Ю3 чел/год = 22 5 0-106 р/год, т. е. 2 млрд 250 млн р. в год составят потенциальные потери от затопления долины реки Катуни и изменения ее климатических характеристик водохранилищами ГЭС только на курортных ресурсах. Это больше, чем вся сметная стоимость строительства и многократно выше ожидаемых прибылей от эксплуатации ГЭС.
Такие расчеты только кажутся завышенными из-за слабого учета социальных факторов жизни общества. В развитых странах, тем не менее, подобные расчеты делаются на прогнозный период в 100 лет и фигурируют в судебных делах (см. также главу 6).
Исчисление эколого-экономических издержек требует учета пространственной иерархии следующих воздействий.
Воздействие на территорию, непосредственно занимаемую хозяйственным объектом (ее полное или частичное изъятие на время или навечно).
Влияние на территорию косвенного воздействия данного объекта. Для химических и горнодобывающих производств — на воду, воздух, почву, биоту в зоне влияния. Перенос загрязнителей в атмосфере иногда происходит на сотни километров. Те же загрязнения и изменения гидрогеологического режима охватывают гидрогеологический бассейн — десятки, а иногда и сотни километров. Например, конус депрессии подземных вод в районе Лебединского разреза Курской магнитной аномалии захватывает район с радиусом около 150 км. Закачка загрязненных вод дает ареал загрязнения в радиусе до 50 км и более. Поэтому размер водозащитных зон, установленный в настоящее время, ошибочен и нуждается в пересмотре. В практике экспертирования он должен устанавливаться по натурным характеристикам региона — гидрогеологическим и др. картам.
Для ГЭС наблюдается воздействие выше и ниже водохранилища и плотины, включая процессы эвтрофикации, кавитационного воздействия на воду, возникновение преграды, гидрологический режим долины реки ниже ГЭС, водного объекта, куда река впадает, и т. п.; для АЭС и ТЭС — тепловое и радиационное (в том числе не улавливаемыми легкими радиоактивными газами) воздействие, загрязнение атмосферы сернистыми и азотными соединениями и т. п., для всех транспортных и энергоустановок — поле шумового и электромагнитного загрязнения и т. п.
Воздействие на сферы Земли в целом (выбросы СОг, легких радиоактивных газов, воздействие на климат, озоновый экран, электромагнитные свойства Земли, биоту и т. п.).
3.4. Социальная цена — это социальные издержки в обозримом будущем. Они возникают от изменения среды жизни людей (отселения, переселения, нового образа жизни и т. п.), ведут к переменам в демографических процессах, социальным перегрузкам (результат — стрессы, антиобщественное поведение, алкоголизм, наркомания и т. п.).
Социальная неустроенность в нашей стране местами достигла парадоксальной величины исторической деструкции. Любой проект нередко получает негативную оценку широкой общественности. Возникла ностальгия по отнюдь не светлому прошлому. Обоснование социальной перспективы, ее очевидность в процессе экспертизы — обязательный элемент при рассмотрении проекта.
Предлагаемые проектами социально-компенсационные меры и затраты на них (строительство жилья, иной инфраструктуры и т. п.) обычно не удовлетворяют противников проекта из-за явной ущербности. Они воспринимаются как подачка ведомства или откровенная попытка дать косвенную взятку местному населению или чаще начальству, озабоченному положением дел в регионе. Сумма получаемых благ, как правило, несопоставима с возникающими потерями. Она должна быть очевидно выше этих потерь. Искусство экспертизы и заключается в расчете баланса социальных плюсов и минусов не только в рамках предлагаемого проектантами, но вытекающего из реальной ситуации. Такая альтернативная проработка — задача экспертизы, если осуществление проекта допустимо по другим предпосылкам.
Социальная цена имеет две важнейшие составляющие.
Социальные компенсации — собственно затраты на перспективное развитие с учетом проектируемого объекта или хозяйственного начинания.
Психологическая (социально-психологическая) цена — компенсационная разница между сложившимся общественным стереотипом восприятия среды и мерой ее изменения. Даже объективное улучшение условий может давать отрицательный эффект. Пример — «грусть больших городов» (разд. 6.2.7). Социально-психологическое сопротивление населения — существенный фактор, иногда требующий очень значительных экономических вложений для его нейтрализации, а иногда принципиально неустранимый. Это необходимо учитывать.
3.5. Аварийная цена (цена риска) — это наценка, возникшая в результате учета степени вероятности возникновения аварии, потенциально возможной в ходе функционирования объекта без вмешательства катастрофических природных факторов (землетрясений, ценами и т. п.), т. е. цена вероятного саморазрушения, аварии. Суммы, необходимые на ликвидацию аварий, должны учитываться при экономической оценке проекта. Например, ущерб от аварии на Чернобыльской АЭС, алгебраически суммируемый с экономической эффективностью станции, едва ли даст положительное сальдо (оно не возникает даже в сравнении с общей эффективностью всех АЭС страны). Аварийная цена — расчетная величина, производная от математической вероятности аварии и ожидаемого от нее ущерба. Для АЭС эта величина поднялась за последнее время на 6 порядков, так как первичные расчеты не соответствуют практике эксплуатации атомных станций.
При определении аварийной цены следует учитывать технологическую культуру страны и ее региона. В местах с низкой технологической культурой аварийная цена резко возрастает.
Цена стрессов и недоверия к техническим объектам (например, радиофобии и химиофобии) непрерывно растет. Прирост стрессогенной заболеваемости от близости атомной станции в среднем равен 0,7 %, снижение производительности труда от техногенных стрессов, по оценкам, достигает в некоторых случаях 50 %.
4. Составляющие риска
4.1. Технико-экономический и технологический риск.
Технико-экономический риск — это вероятность смены тенденций развития или революционных изменений технологий. Например, появление нового высокоэффективного альтернативного энергоисточника (скажем, термоядерная реакция при комнатной температуре или водородная энергетика) или еще одна авария на АЭС типа Чернобыльской могут круто повернуть развитие энергетики, и цена энергии, получаемой старым традиционным способом, станет выше общественно приемлемой. Технико-экономический риск, как и остальные составляющие риска, имеет как экономическую, так и внеэкономическую, главным образом, социальную составляющую.
Технологический риск — это степень надежности технологий, их безаварийность. Усталость материалов, неожиданные отклонения метеорологических факторов от расчетных — все должно быть подвергнуто тщательному анализу экспертов. Даже расчет «дважды на дурака» не снимает человеческого фактора технологического риска. Поскольку увеличение степени технологической надежности всегда или как правило ведет к удорожанию проекта, этот блок тесно связан с экономическими параметрами.
При осуществлении природохозяйственных проектов анализ технологической надежности включает не только сам объект (скажем, плотину ГЭС), но и его инфраструктуру, а также окружение. В экстремальных обстоятельствах не должно возникать препятствий для ликвидации последствий аварий. Естественно, что технологический риск непосредственно связан с аварийной ценой (п. 3.5).
4.2. Экологический риск — это возможность появления неустранимых экологических запретов: развитие тепличного эффекта, разрушение озонового экрана, кислотные осадки, радиоактивное загрязнение, недопустимая концентрация тяжелых металлов (например, ртути в озерах — водохранилищах ГЭС), недопустимое изменение гидрологического режима и т. п. Экологический риск должен рассматриваться на всех уровнях — от точечного до глобального.
Риск перманентных экологических последствий. Для ГЭС — это разрушение экосистем реки, где построена станция, и постепенное нарушение экологических связей между водами суши и океана (озера), деструкция экосистем водотоков и прибрежных океанических (озерных) вод, разрушение берегов морей из-за перехвата твердого стока реки и т. п. Для АЭС это воздействие на электромагнитные свойства атмосферы и накопление радиоактивных веществ; для ТЭС — тепличный эффект, подкисление осадков; для производства хлорфтористых соединений, высотных полетов самолетов, запуска ракет, применения азотных удобрений в сельском хозяйстве — разрушение озонового экрана планеты и т. п.
Риск природных катастроф: землетрясений, цунами, ураганов, селей, снежных лавин, наводнений, гололедов и т. п. Следует различать риск воздействия на сам рассматриваемый объект и его инфраструктуру (например, от плотин ГЭС до линий электропередачи), а также риск перманентный (налипание снега, ураганы и т. п.) и разовый (например, внезапное катастрофическое разрушение плотины крупной ГЭС, скажем, Иркутской в Сибири, построенной в зоне десятибалльной сейсмичности, поведет к уничтожению ряда городов вдоль Ангары — Иркутска, Ангарска и др.).
Особое место занимает риск террористических диверсий. Практически все крупнейшие города Сибири (Иркутск, Красноярск, Новосибирск и др.) находятся ниже очень крупных водохранилищ с высокими плотинами. Взрыв плотины может привести к уничтожающему наводнению.
Риск заболеваний человека — это один из сложнейших блоков экспертизы. Он состоит из двух основных подблоков: а) профессиональных рисков и б) связанных с повседневной жизнью в данном населенном месте и его окрестностях. При этом каждый из подблоков должен быть соотнесен с другим, так как относительно безопасное новое производство может интегрироваться в здоровье человека с опасным фоном. Этот фон может создавать территориально смежные предприятия, прежние события (например, в районе Чернобыля либо Челябинска) , или коммунальное хозяйство (среда в жилом доме, транспорт и т. п.). К тому же возможно и значительное воздействие питания. Не следует исключать климатических воздействий и аллергенов окружающей природной среды (пыльца растений, тополиный пух и др.), а также психогенных стрессов. Сложение всех факторов, даже как будто внешне незначительных (типа слабых перемен во влажности воздуха) может заметно изменить риск заболеваний человека.
Поскольку нижние пороги воздействия многих факторов неизвестны, а другие равны практически недостижимому нулю, расчет должен быть вероятностным и многовариантным (от — до). При этом его следует относить и к географическому месту проведения хозяйственного мероприятия, осуществления проекта или внедрения новой технологии. Особенно актуально это в условиях маргинальных зон: Крайнего Севера, пустыни и т. п.
Так как риск техногенных заболеваний всегда присутствует, а снять его нацело практически невозможно, то следует указать его размерность и сравнить с альтернативными проектными решениями. Как правило, это не делается либо выполняется на крайне низком уровне.
Допустимым риском заболеваемости, видимо, следует считать такой, который не приводит к снижению длительности средней вероятной продолжительности жизни человека, т. е. компенсируется экономически приемлемыми усилиями здравоохранения и рекреацией. Если речь идет об экспертизе продукции, то необходимо оценить вероятное воздействие ее на здоровье людей по следующим трем показателям.
По воздействию продукта во время его производства: профессиональный риск и риск для окружающего производство населения (иногда он увеличивается даже от пыли, приносимой работником домой с производства на одежде).
По воздействию продукта при его промежуточном использовании как полуфабриката или в цепи производств.
По воздействию окончательного продукта.
Наиболее яркий пример риска заболеваемости человека дает производство белково-витаминных концентратов (БВК), основанное на выращивании условно непатогенных микроорганизмов (кроме того, белок — сильный аллерген). Производство опасно профессиональной вредностью, а при недостаточной очистке выбросов (и тем более при неорганизованных выбросах) — риском для окружающего населения, особенно ослабленного, в том числе воздействием сопутствующих производств, прежде всего нефтехимии (один из основных процессов БВК основан на парафинах нефти). При неумелом применении БВК опасен для работников животноводства, а при передозировке — и для самих животных. Проникая по пищевой цепи в продукты питания, комплекс веществ становится опасным для потребителей мяса животных, выращиваемых с применением БВК-
Подобная же цепь возникает при применении в животноводстве антибиотиков, гормональных препаратов и других стимуляторов роста и развития. Аналогичный пример дает и пестицид ДДТ, от которого, как уверяют химики и некоторые токсикологи, не умер при остром отравлении ни один человек. Однако болели многие (часто от побочных воздействий), косвенных жертв возникло немало, гибли птицы и рыбы, разрушались экосистемы и возникла опасность полной деструкции живой природы.
Следует отметить, что ДДТ и БВК давали положительный эффект: ДДТ спас немало людей от малярии, сонной болезни, а леса и урожаи — от массовых вредителей. Применение БВК увеличивало выход мяса свинины и птицы. Однако возрастание экологического ущерба и экологического риска, в том числе заболевания людей (есть сомнение, не было ли число дополнительно погибших от пестицида больше числа спасенных от его применения), сделали и ДДТ и БВК нежелательными продуктами. Их удел — запрещение, сколь бы привлекательными они ни были для технологов.
Социальный риск — это возможность или невозможность социальной адаптации: например, нет желания жить вблизи АЭС (радиофобия) или вблизи опасного химического производства, скажем, Одесского припортового завода. Социальный риск тесно связан с чисто технологическим риском (п. 4.1.2). Ненадежные технологии могут быть начисто отвергнуты населением — такова судьба АЭС в Австрии, Швеции и др. странах.
Если теоретические расчеты дают очень низкие значения социального риска, а фактически он оказывается значительно большим, то социально-психологический риск возрастает многократно — несопоставимо выше его реального значения. Это значение необходимо определить и скомпенсировать. Компенсация обычно производится с помощью целесообразного развития инфраструктуры, особенно рекреационной, и денежно-материальных вознаграждений населению — своеобразной «платы за страх».
Социальная совместимость (эстетическая, культурная, религиозная и т. д.) — это степень воздействия через социально-психологические механизмы соответствия этническому стереотипу, национальным ценностным установкам. Например, Тюменский нефтегазовый комплекс или Туруханская ГЭС культурно чужды коренному населению, занимающемуся оленеводством, охотой и' рыболовством, свиноводческий комплекс был абсолютно неприемлем в исламской Чечне, а промышленность в Средней Азии чужда в основном земледельческому населению региона.
Однако всегда чуждость проекта культуре местного населения — серьезный мотив против его осуществления в данном месте.
4.5. Экологическая совместимость — это воздействие на природные объекты и системы, не адаптируемые к проекту (например, световое загрязнение нарушает суточные ритмы животных, постепенное накопление радиоактивных веществ разрушает генофонд и т. п.). Экосовместимость непосредственно связана с экологической ценой (п. 3.3).
Обе формы совместимости — социальную и экологическую — можно выразить в экономических показателях. В первом случае это затраты на обучение и социальную переориентировку местного населения, расходы на контингент пришлого населения (с учетом того, что различия в оплате и особенно в надбавках вызывают серьезные социальные конфликты), ликвидацию напряжений, связанных с расселением этого пришлого населения и т. д. и т. п. Во втором случае доступно рассчитать прямые и косвенные перманентные ущербы, которые, как правило, постепенно возрастают с ходом времени и вовлечением в процесс все новых популяций людей. Рост наследственных заболеваний может вызвать необходимость усиленного медицинского обслуживания. Общая сумма расходов вкупе с надбавками «за вредность» может оказаться очень значительной и сделать объект экономически нерентабельным. Еще выше опасность его моральной (социально-психологической) и социальной нерентабельности — ущербности в общественных структурах.