
- •І Физические основы электротехники Предисловие
- •Тема 1. Изучение физических явлений
- •Физическое явление
- •1.1.1 Описание физического явления
- •1.1.2 Физические величины, описывающие явление
- •1.1.3 Физический закон
- •1.1.4 Математическая запись закона
- •1.1.5 Применение физического явления и закона в технике
- •Пример расчета нагревания воды.
- •Описание физического явления,
- •1.2 Характеристика физической величины
- •1.3 Контролирующе-обучающая программа изучения явления механического движения физического тела. Описание явления механического движения
- •Физические величины и понятия, описывающие явление механического движения Система координат
- •Система отсчета
- •Траектория
- •Материальная точка
- •Перемещение
- •Скорость
- •Решение
- •1.4 Комплексное квалификационное задание по теме «Изучение физических явлений» Условие
- •Задание
- •Творческое конструкторско-экспериментальное задание
- •Тема 2 Явление электризации тел
- •2.1 Описание физического явления электризации тел.
- •Творческое конструкторско-экспериментальное задание.
- •Тема 3 Явление взаимодействия заряженных тел
- •3.1 Описание физического явления взаимодействия заряженных тел.
- •3.4 Математическая запись закона взаимодействия заряженных тел:
- •3.5 Применение явления взаимодействия заряженных тел
- •3.6 Комплексное квалификационное задание по теме «Явление взаимодействия заряженных тел» Условие
- •Задание
- •Варианты.
- •Творческое конструкторско-экспериментальное задание.
- •4 Явление электрического тока.
- •4.1 Описание явления электрического тока. Дискретность электрического заряда. Электрон
- •Пример 4.1 Тело заряжено отрицательно и заряд его составляет 6,410–10 Кл. Сколько электронов приобрело тело?
- •Строение атомов
- •Заряжение тел и строение атомов
- •Что такое электрический ток?
- •Источники электрического тока
- •Электрическая цепь
- •Действия электрического тока
- •Электрический ток в металлах. Направление тока.
- •4.2 Физические величины, описывающие явление электрического тока. Сила электрического тока.
- •Пример 4.2 Через поперечное сечение проводника за 5 минут проходит заряд величиной 600 Кл. Определить силу электрического тока.
- •Электрическое напряжение
- •Электрическое сопротивление.
- •Пример 4.6 Медный проводник имеет длину 1000 м, площадь поперечного сечения проводника равна 3,42 мм2. Определить сопротивление проводника.
- •4.3 Закон электрического тока
- •4.4 Математическая запись закона электрического тока.
- •4.5 Применение явления электрического тока в электротехнике Реостаты
- •Последовательное соединение проводников
- •Параллельное соединение проводников
- •Творческое конструкторско-экспериментальное задание
- •Тема 5 Явление теплового действия электрического тока
- •5.1 Описание явления теплового действия электрического тока
- •5.2 Физические величины, описывающие явление теплового действия электрического тока
- •Работа электрического тока
- •Мощность электрического тока
- •Количество теплоты
- •Сила электрического тока
- •Сопротивление.
- •5.3 Закон теплового действия электрического тока
- •5.4 Математическая запись закона теплового действия электрического тока
- •5.5 Применение явления теплового действия электрического тока в электротехнике
- •Задание логически-понятийного характера 1
- •Задание логически-понятийного характера 2
- •Комплексная задача
- •Алгоритм решения задачи
- •Варианты.
- •Творческое конструкторско-экспериментальное задание
- •Т ема 6 Явление электромагнетизма
- •6.1 Описание явления электромагнетизма
- •6.2 Физические величины, описывающие явление электромагнетизма
- •Сила электрического тока
- •Вращающий момент рамки с током
- •Площадь рамки с током
- •Магнитная индукция
- •Магнитный поток однородного магнитного поля
- •Индуктивность катушки
- •6.3 Закон электромагнетизма
- •Математическая запись закона электромагнетизма
- •Применение явления электромагнетизма в технике
- •Творческое конструкторско-экспериментальное задание
- •Тема 7 Явление электромагнитной индукции в движущемся проводнике
- •7.1 Описание явления электромагнитной индукции в движущемся проводнике
- •7.2 Физические величины, описывающие явление электромагнитной индукции в движущемся проводнике
- •Электродвижущая сила индукции
- •Магнитная индукция
- •Линейная скорость движения проводника
- •7.3 Закон электромагнитной индукции в движущемся проводнике
- •7.4 Математическая запись закона электромагнитной индукции в движущемся проводнике
- •7.5 Применение явления электромагнитной индукции в движущемся проводнике Творческое конструкторско-экспериментальное задание
- •Тема 8 Явление электромагнитной индукции в проводящем контуре
- •8.1 Описание явления электромагнитной индукции в проводящем контуре.
- •8.2 Физические величины, описывающие явление электромагнитной индукции в проводящем контуре
- •Электродвижущая сила индукции
- •Магнитная индукция
- •Магнитный поток
- •8.3 Закон электромагнитной индукции.
- •8.4 Математическая запись закона.
- •8. 5 Применение явления электромагнитной индукции в технике.
- •Творческое конструкторско-экспериментальное задание
- •Тема 9 Явление электромагнитной силы
- •9.1 Описание явления электромагнитной силы
- •9.2 Физические величины, описывающие явление электромагнитной силы
- •Сила электрического тока
- •Магнитная индукция
- •Творческое конструкторско-экспериментальное задание
Творческое конструкторско-экспериментальное задание
Спроектировать и изготовить устройство для демонстрации явления электрического тока. Предлагается в качестве варианта выполнения задания использовать диэлектрическую пластину (например, из плексигласа), гальванический элемент, выключатель, лампочку накаливания, медные проводники. Предусмотреть возможность замены гальванического элемента закороткой и лампочки накаливания – диэлектрической уставкой.
Продемонстрировать явление электрического тока.
Исследовать три условия создания электрического тока.
Зная напряжение гальванического элемента и мощность лампочки накаливания определить силу тока в цепи.
Тема 5 Явление теплового действия электрического тока
5.1 Описание явления теплового действия электрического тока
При протекании электрического тока в проводнике направленно движущиеся свободные электроны сталкиваются с атомами (молекулами) вещества проводника, которые находятся в тепловом движении. При этом они отдают им часть своей кинетической энергии, увеличивая кинетическую энергию атомов (молекул), что приводит к повышению температуры проводника. Таким образом, электрический ток совершает работу, которая равна увеличенной кинетической энергии атомов (молекул).
5.2 Физические величины, описывающие явление теплового действия электрического тока
Найдём работу электрического тока. Из определения напряжения известно, что напряжение – это физическая величина, численно равная отношению работы, которую совершают сторонние силы источника тока по перенесению зарядов против сил электрического поля, к величине этих зарядов. Из определяющей формулы напряжения находим выражение работы:
.
Из определения силы электрического тока известно, что сила электрического тока – это физическая величина, численно равная отношению количества зарядов, проходящих через поперечное сечение проводника, ко времени протекания тока. Из определяющей формулы силы электрического тока находим выражение заряда:
.
Тогда работа электрического тока равна:
.
Единицей работы электрического тока является джоуль (Дж):
.
Для характеристики скорости выполнения работы введена физическая величина, называемая мощностью, под которой понимается количество работы, выполненной за единицу времени.
Определяющая формула мощности:
.
Единицей мощности является ватт (Вт):
.
Подставляем выражение работы, в котором работа определяется через напряжение, силу тока и время, в формулу мощности и получаем:
,
.
Измеряется работа электрического тока с помощью электрического счётчика, а мощность – с помощью ваттметра.
Пример 5.1 Медный проводник длиной 1000 м и площадью поперечного сечения 1,71 мм2 подключен к источнику постоянного тока напряжением 100 В. Определить сопротивление проводника, силу электрического тока в проводнике, работу, которую выполняет электрический ток за 1000 с, и мощность электрического тока.
Решение.
1. Составляем условие в технической системе:
l = 1000 м
S = 1,71 мм2
= 0,0171 Оммм2/м
U = 100 В
t = 1000 с
R, I, А, Р – ?
2. Сопротивление проводника находим по расчётной формуле:
,
.
3. Подставляем значения физических величин и находим сопротивление проводника:
,
.
4. Силу электрического тока в проводнике определяем по закону Ома:
,
.
5. Подставляем значения физических величин и находим силу электрического тока в проводнике:
,
.
6. Работу электрического тока в проводнике определяем по выражению:
,
.
7. Подставляем значения физических величин и находим работу электрического тока в проводнике:
,
.
8. Мощность электрического тока определяем по формуле:
,
.
9. Подставляем значения физических величин и находим мощность электрического тока:
,
.
Таким образом, для характеристики явления теплового действия электрического тока введены следующие физические величины: работа электрического тока, мощность электрического тока, количество теплоты, сопротивление проводника, время.