
- •Конспект лекцій з дисципліни: «Суднові парові котли та їх експлуатація»
- •Содержание
- •Лекция 1.
- •План лекции
- •1. Назначение и классификация судовых паровых котлов
- •2. Характеристики паровых котлов
- •Вопросы для самоконтроля
- •Лекции 2-3.
- •План лекции
- •1. Огнетрубные паровые котлы
- •2. Водотрубные котлы с естественной циркуляцией
- •Секционные горизонтальные водотрубные котлы
- •Трехколлекторные двухпроточные водотрубные котлы
- •Трехколлекторные однопроточные водотрубные котлы
- •Двухколлекггорные однопроточные водотрубные котлы
- •Вертикальные водотрубные котлы с ец шахтного типа
- •8. Прямоточные паровые котлы
- •9. Котлы с принудительной циркуляцией малой кратности
- •10. Котлы с многократной принудительной циркуляцией
- •11. Особенности высоконапорных котлов
- •12. Двухконтурные паровые котлы
- •13. Вспомогательные и утилизационные паровые котлы
- •Контрольные вопросы
- •Лекция 4.
- •План лекции
- •1. Требования, предъявляемые к топливу паровых котлов.
- •2. Основные характеристики котельного топлива.
- •3. Основы теории горения топлива
- •Контрольные вопросы
- •Лекция 5.
- •План лекции
- •1. Типы топочных процессов и их особенности
- •2. Топки паровых котлов. Требования к топкам судовых котлов
- •3. Топочные устройства паровых котлов
- •4. Организация дутья в паровых котлах
- •Контрольные вопросы
- •Лекции 6 - 7
- •План лекции
- •1. Парообразующие поверхности нагрева котлов
- •2. Коллекторы водотрубных котлов
- •3. Пароперегреватели
- •4. Хвостовые поверхности нагрева
- •5. Арматура паровых котлов
- •6. Футеровка и изоляция котла.
- •7. Каркас и обшивка котла. Фундаменты и опоры.
- •Контрольные вопросы
- •Лекция 8
- •План лекции
- •1. Тепловой баланс и кпд паровых котлов с вентиляторным дутьем
- •2. Анализ потерь тепла в паровом котле
- •3. Тепловой баланс и кпд высоконапорных котлов
- •4. Тепловой баланс и кпд парогенератора яэу
- •Контрольные вопросы
- •Лекция 9.
- •План лекции
- •1. Теплообмен в паровых котлах.
- •2. Процесс кипения воды. Кризисы теплообмена.
- •3. Основные понятия гидродинамики котлов и парогенераторов с ец
- •4. Критерии надежности естественной циркуляции
- •5. Основные понятия гидродинамики котлов и парогенераторов с пц
- •Контрольные вопросы
- •Лекция 10.
- •План лекции
- •1. Необходимость сепарации пара в котлах и парогенераторах.
- •2. Влияние различных факторов на влажность пара.
- •3. Сепарационные устройства паровых котлов и парогенераторов.
- •4. Показатели качества воды. Основы водоподготовки.
- •5. Докотловая обработка питательной воды
- •6. Внутрикотловая обработка воды.
- •7. Коррозия металла паровых котлов. Хранение котлов
- •8. Особенности водно-химических режимов яэу
- •Контрольные вопросы
- •Лекции 11, 12
- •План лекции
- •Контрольные вопросы
- •Лекции 13, 14.
- •План лекции
- •1. Понятие о тепловой схеме псу. Классификация тепловых схем.
- •2. Нерегенеративные тепловые схемы ктэу
- •3. Регенеративные тепловые схемы псу 2-го рода
- •4. Регенеративные тепловые схемы ктэу 1-го рода
- •5. Тепловые схемы с промежуточным перегревом пара (ппп)
- •6. Способы повышения экономичности ктэу
- •7. Области применения различных тепловых схем ктэу
- •8. Размещение ктэу на судне
- •Контрольные вопросы
- •Лекция 15.
- •План лекции
- •Контрольные вопросы
- •Література
5. Тепловые схемы с промежуточным перегревом пара (ппп)
В тепловых схемах КТЭУ с промежуточным перегревом пара пар, прошедший ряд ступеней турбины, направляется в промежуточный пароперегреватель котла, и после вторичного перегрева направляется обратно в турбину для окончательного расширения в оставшихся ступенях.
Существует два принципа промежуточного перегрева пара газовый, при котором вторично перегреваемый пар воспринимает теплоту продуктов сгорания топлива в котле. Такой перегрев может осуществляться:
- в промежуточном пароперегревателе котла, расположенном в газоходе;
в отдельной топке котла;
в выносных пароперегревателях, оснащенных топками со сжиганием топлива в кипящем слое;
- паровой, при котором греющей средой является свежий пар, вырабатываемый котлом.
Применение газового перегрева пара позволяет довести температуру вторично перегретого пара до первоначальной, а при паровом перегреве -приблизительно до температуры насыщения греющего пара. Выбор способа перегрева пара зависит от начальных параметров пара, тепловой схемы установки и определяется технико-экономическими расчетами. В настоящее время в судовых КТЭУ применяется исключительно газовый перегрев пара в промежуточных пароперегревателях (котлы КВГ-80).
Тепловая
схема простейшей установки с ППП (без
использования регенерации)
показана
на рис.
81.
Пар,
вырабатываемый
котлом,
поступает
в корпус ТВД.
Расширившийся
в ступенях ТВД пар направляется в
промежуточный пароперегреватель котла,
где
происходит повышение его температуры
(давление
вторично перегреваемого пара при этом
остается постоянным).
После
перегрева пар направляется в корпус
ТНД,
где
окончательно
расширяется и сбрасывается в главный
конденсатор.
Вместе с тем, использование промежуточного перегрева пара приводит:
к значительному усложнению конструкции парового котла, имеющего в своем составе дополнительные пароперегревательные поверхности нагрева;
усложнению системы главного пара и применению дополнительных протяженных паропроводов, направляющих пар от турбины к промежуточному пароперегревателю котла и обратно в турбину;
повышенным потерям давления пара в дополнительных паропроводах;
усложнению системы автоматического регулирования КТЭУ;
повышению стоимости изготовления установки;
невозможности использования в составе установки реверсивных турбин: реверс в КТЭУ с ППП возможно осуществлять только за счет установки ВРШ. Трудность обеспечения реверса связана с тем, что при использовании ТЗХ трубная система пароперегревателя оставалась бы без охлаждения (пар при работе ТЗХ через промежуточный пароперегреватель не проходит), что привело бы к перегоранию трубной системы промежуточного пароперегревателя, находящейся в зоне высоких температур дымовых газов.
6. Способы повышения экономичности ктэу
Экономичности КТЭУ можно добиться, если улучшить экономические показатели составляющих, входящих в формулу КПД КТЭУ:
где:
щс - КПД тепловой схемы, оценивающий совершенство взаимосвязей
между элементами установки, и систем, обслуживающих ее основные элементы. На КПД тепловой схемы влияют: значения энтальпии рабочих сред; начальные и конечные параметры пара; тип регенеративного процесса, число ступеней регенерации; тип применяемых водоподогревателей, число отборов пара (для схем 1-го рода), характер процессов теплообмена в теплообменниках и другие факторы; пк- КПД главных котлов;
Пе - эффективный КПД главной турбины;
Росс - коэффициент общесудовых затрат, характеризующий расход
пара на общесудовые потребители;
В общем случае, для повышения экономичности КТЭУ возможно использование следующих технических решений:
. увеличение начальных параметров пара. Этот способ повышения КПД достаточно эффективен и часто используется в совокупности с промежуточным перегревом пара. В КТЭУ с ППП повышением начального давления пара можно увеличить КПД установки на 3 ÷ 8 %, повышением начальной температуры - на 2,5 ÷ 5 %;
. увеличение числа ступеней регенеративного подогрева питательной воды. КПД цикла КТЭУ повышается:
при одноступенчатом подогреве питательной воды на 3,5 ÷ 4,0 %;
при двухступенчатом -на 5,5 ÷ 6,0 %;
трехступенчатом -на 7,0 ÷ 7,5 %;
четырехступенчатом -на 8,0 ÷ 8,5 %.
Увеличение числа ступеней подогрева более пяти не дает ощутимого выигрыша в повышении КПД, но значительно усложняет тепловую схему установки, систему регулирования и управления КТЭУ, и увеличивает малогабаритные показатели и стоимость установки. Увеличение числа ступеней регенерации неразрывно связано с повышением начальных параметров пара. Чем более высокими будут начальные параметры пара, тем больше ступеней регенерации возможно применить, тем более высокой будет температура питательной воды на выходе из последней ступени подогрева;
. увеличение КПД главных котлов: возможно за счет снижения потерь теплоты в котлах:
от химической и механической неполноты сгорания топлива, что в свою очередь достигается совершенствованием процессов сгорания топлива;
с уходящими газами, за счет совершенствования и оптимизации процессов теплопередачи в трубных поверхностях нагрева котла и использования развитых хвостовых поверхностей нагрева;
в окружающее пространство, за счет применения более совершенных способов изоляции котла и поддержания качественного состояния изоляции котлов в процессе эксплуатации;
увеличение КПДГТЗА: достигается совершенствованием аэродинамики проточной части турбины, увеличением частоты вращения ротора, применением планетарных передач, заменой реверсивных турбин реверсивными ВРШ, возрастанием агрегатной мощности, совершенствованием аэродинамических характеристик регулирующих органов;
увеличение КПД вспомогательных механизмов: позволяет снизить расход пара на вспомогательные механизмы, и тем самым улучшить характеристику тепловой схемы;
исключение маломощных турбоприводов с низким КПД и замена турбоприводных вспомогательных механизмов на электроприводные. В этом случае в тепловой схеме используется единственный вспомогательный турбомеханизм - турбогенератор, имеющий достаточно высокий КПД, остальные вспомогательные механизмы электрифици-рованы. В некоторых случаях для ряда турбомеханизмов используется групповой привод, в котором один мощный и имеющий высокий КПД турбомеханизм приводит в действие сразу несколько вспомогательных механизмов. Например, в ПКБТ от одного турбопривода производится раздача мощности на три насоса: конденсатный, бустерный и питательный. Часто групповой привод используется в конструкции турбогенераторов, когда от вала турбогенератора мощность передается на навешенные питательный и масляный насосы. Прирост КПД за счет использования группового привода может достичь 2,4 %;
применение самопроточной циркуляции взамен принудительной, когда для прокачки трубной системы главного конденсатора вместо напора циркуляционного насоса используется динамический напор набегающего потока воды. При этом турбопривод ТЦН отключается, уменьшая расход пара в тепловой схеме на маломощные вспомогательные механизмы Прирост КПД может составить 0,9 %;
уменьшение потерь теплоты с забортной водой. В тепловых схемах КТЭУ прокачивание маслоохладителя, холодильников эжекторов и конденсатора испарительной установки часто производится забортной водой. При этом часть теплоты, полученной в паровом котле, передается забортной воде. Если обеспечить прокачку
теплообменников конденсатом главного цикла, то можно уменьшить потери теплоты во внешнюю среду и вернуть теплоту обратно в цикл. Эти мероприятия могут дать прирост КПД КТЭУ до 0,5 %;
. замена эжекторов вакуумными насосами. При этом из тепловой схемы исключаются струйные насосы (эжекторы), имеющие относительно низкий КПД и потребляющие некоторое количество пара для работы. Замена эжекторов на вакуумные электронасосы уменьшает общий расход пара на нужды установки и может дать прирост КПД КТЭУ до 0,2 %.