
- •Конспект лекцій з дисципліни: «Суднові парові котли та їх експлуатація»
- •Содержание
- •Лекция 1.
- •План лекции
- •1. Назначение и классификация судовых паровых котлов
- •2. Характеристики паровых котлов
- •Вопросы для самоконтроля
- •Лекции 2-3.
- •План лекции
- •1. Огнетрубные паровые котлы
- •2. Водотрубные котлы с естественной циркуляцией
- •Секционные горизонтальные водотрубные котлы
- •Трехколлекторные двухпроточные водотрубные котлы
- •Трехколлекторные однопроточные водотрубные котлы
- •Двухколлекггорные однопроточные водотрубные котлы
- •Вертикальные водотрубные котлы с ец шахтного типа
- •8. Прямоточные паровые котлы
- •9. Котлы с принудительной циркуляцией малой кратности
- •10. Котлы с многократной принудительной циркуляцией
- •11. Особенности высоконапорных котлов
- •12. Двухконтурные паровые котлы
- •13. Вспомогательные и утилизационные паровые котлы
- •Контрольные вопросы
- •Лекция 4.
- •План лекции
- •1. Требования, предъявляемые к топливу паровых котлов.
- •2. Основные характеристики котельного топлива.
- •3. Основы теории горения топлива
- •Контрольные вопросы
- •Лекция 5.
- •План лекции
- •1. Типы топочных процессов и их особенности
- •2. Топки паровых котлов. Требования к топкам судовых котлов
- •3. Топочные устройства паровых котлов
- •4. Организация дутья в паровых котлах
- •Контрольные вопросы
- •Лекции 6 - 7
- •План лекции
- •1. Парообразующие поверхности нагрева котлов
- •2. Коллекторы водотрубных котлов
- •3. Пароперегреватели
- •4. Хвостовые поверхности нагрева
- •5. Арматура паровых котлов
- •6. Футеровка и изоляция котла.
- •7. Каркас и обшивка котла. Фундаменты и опоры.
- •Контрольные вопросы
- •Лекция 8
- •План лекции
- •1. Тепловой баланс и кпд паровых котлов с вентиляторным дутьем
- •2. Анализ потерь тепла в паровом котле
- •3. Тепловой баланс и кпд высоконапорных котлов
- •4. Тепловой баланс и кпд парогенератора яэу
- •Контрольные вопросы
- •Лекция 9.
- •План лекции
- •1. Теплообмен в паровых котлах.
- •2. Процесс кипения воды. Кризисы теплообмена.
- •3. Основные понятия гидродинамики котлов и парогенераторов с ец
- •4. Критерии надежности естественной циркуляции
- •5. Основные понятия гидродинамики котлов и парогенераторов с пц
- •Контрольные вопросы
- •Лекция 10.
- •План лекции
- •1. Необходимость сепарации пара в котлах и парогенераторах.
- •2. Влияние различных факторов на влажность пара.
- •3. Сепарационные устройства паровых котлов и парогенераторов.
- •4. Показатели качества воды. Основы водоподготовки.
- •5. Докотловая обработка питательной воды
- •6. Внутрикотловая обработка воды.
- •7. Коррозия металла паровых котлов. Хранение котлов
- •8. Особенности водно-химических режимов яэу
- •Контрольные вопросы
- •Лекции 11, 12
- •План лекции
- •Контрольные вопросы
- •Лекции 13, 14.
- •План лекции
- •1. Понятие о тепловой схеме псу. Классификация тепловых схем.
- •2. Нерегенеративные тепловые схемы ктэу
- •3. Регенеративные тепловые схемы псу 2-го рода
- •4. Регенеративные тепловые схемы ктэу 1-го рода
- •5. Тепловые схемы с промежуточным перегревом пара (ппп)
- •6. Способы повышения экономичности ктэу
- •7. Области применения различных тепловых схем ктэу
- •8. Размещение ктэу на судне
- •Контрольные вопросы
- •Лекция 15.
- •План лекции
- •Контрольные вопросы
- •Література
8. Особенности водно-химических режимов яэу
Основными показателями качества воды ЯППУ, контролируемыми в процессе эксплуатации установки, являются:
общее солесодержание, [мг/л] NaCl;
удельная электрическая проводимость;
содержание ионов хлора, [мг/л];
содержание растворенного кислорода, [мг/л];
содержание продуктов коррозии, [мг/л] ионов Cu2*, Fe3*;
водородный показатель рН;
плотный остаток, [мг/л];
прокаленный остаток, [мг/л];
содержание нефтепродуктов, [мг/л];
содержание аммиака, [мг/л];
содержание гидразина, [мг/л];
содержание форфат-ионов, [мг/л] ионов PO34 при аммиачно-фосфатном режиме;
соленость, °Бр;
объемная активность, Ки/л - определяется как активность плотного остатка пробы воды.
ЯЭУ имеет специфические особенности, которые необходимо учитывать при осуществлении водно-химических режимов:
физико-химические свойства применяемых материалов (ядерное топливо, цирконий, сплавы титана, алюминий, аустенитные стали и т.д.);
конструкция и условия работы некоторых элементов (таких, как ТВЭЛы, работающие длительное время в условиях коррозионного воздействия теплоносителя, мощного ионизирующего излучения, высоких механических и тепловых нагрузок);
содержание в воде первого и третьего контуров радиоактивных веществ, образующихся при активации продуктов коррозии и химических соединений, находящихся в воде контуров;
радиолиз воды под воздействием ионизирующих излучений;
наличие в воде контуров примесей, которые вводятся для обеспечения работы реактора (например, раствора борной кислоты для изменения реактивности, наличие азота, поступающего из системы компенсации объема теплоносителя и поддержания давления первого контура, и т.д.).
С учетом изложенного, водно-химические режимы, проводимые в контурах ЯЭУ, должны обеспечивать:
сохранение целостности и герметичности защитных барьеров ППУ, предотвращающих выход радиоактивных веществ в окружающую среду (оболочек ТВЭЛ, корпусов реактора, парогенераторов, трубопроводов контуров, трубных систем ПГ и т.д.);
сокращение скорости образования и накопления радиоактивных продуктов, уменьшение их отложений на поверхностях контуров;
организацию постоянной и эффективной очистки рабочих сред от продуктов коррозии и вредных примесей, а также теплоносителя от радиоактивных веществ;
постоянный контроль за концентрацией примесей и качеством воды во всех контурах и приведение их к установленным нормам.
В качестве основных конструкционных материалов, используемых в судовых ЯППУ, применяются:
нержавеющие стали аустенитного класса (все трубопроводы и корпуса оборудования первого и третьего контуров, питательные трубопроводы и часть вспомогательных трубопроводов второго контура); Эти стали имеют скорость общей коррозии в 10-100 раз меньшую, по сравнению с углеродистыми сталями, и на скорость коррозии практически не влияют содержание 02, С02, сульфатов, нитратов, фосфатов и карбонатов в широком диапазоне рН. Однако скорость коррозии возрастает в присутствии хлоридов и фторидов;
циркониевые и ниобиевые сплавы, используемые при изготовлении оболочек ТВЭЛ. Циркониевые сплавы в чистой воде при температурах 300-330 °С легко пассивируются с образованием плотной оксидной пленки. Однако при более высоких температурах и возрастании концентрации кислорода более 0,1 мг/кг защитная пленка разрушается. Повышенные содержания хлоридов вызывают язвенную коррозию и коррозионное растрескивание;
углеродистые низколегированные спиши перлитного класса, используемые для изготовления паропроводов.
Существенно увеличивают скорость коррозии повышение концентрации кислорода до значения > 0,02 мг/кг, снижения значения рН < 3, наличие в воде различных солей, С02 и хлоридов; - медь и ее сплавы МН-70-30 (мельхиор) и МНЖ используются для изготовления трубопроводов конденсатной системы и поверхности теплообмена в главных конденсаторах. Скорость коррозии меди и ее сплавов в деаэрированной и обессоленной воде мала. Повышение содержания кислорода, углекислоты, сульфатов, хлоридов ускоряет процессы коррозии, но при низких температурах, при которых работает конденсатная система, это ускорение несущественно.
Таким образом, для снижения скорости коррозии и выноса продуктов коррозии в теплоноситель необходимо во всех контурах ятремиться к низкому содержанию в воде кислорода, хлоридов, фторидов, растворенных солей и газов и поддерживать оптимальное значение рН, которое для циркония составляет 6,5-8; для перлитных и аустенитных сталей 9-12.
Тип водно-химического режима для ЯЭУ выбирается в зависимости от состава материалов и условий работы контуров (давления, температуры, наличия и интенсивности ионизирующих излучений), типа системы очистки теплоносителя, использования технологических присадок, таких как борная кислота, азот и т.д.).
Число водно-химических режимов, используемых в ЯЭУ, достаточно велико, но все они могут быть разделены на две группы: бескоррекционные режимы, при которых в воду не вводятся никакие присадки; и коррекционные режимы, требующие введения в воду различного рода присадок для поддержания желательных значений рН, концентрации кислорода, изменения химического состава продуктов коррозии, скорости их выноса в воду и т.д.
Бескоррекционные режимы наиболее просты и широко используются в контурах с обескислороженной и обессоленной водой, имеющих достаточно эффективные системы очистки воды от продуктов коррозии и примесей. Для судовых ЯППУ такие режимы обычно применяются в третьем и втором контурах.
В третьем контуре, не имеющем практически никаких утечек воды (контур герметичен), оборудование и трубопроводы которого изготовлены преимущественно из нержавеющей стали, осуществляется: постоянная очистка воды от продуктов коррозии, для чего часть воды (~ 1 % от общего расхода) пропускается через ионообменный фильтр; и постоянное удаление из контура кислорода и водорода, образовавшихся при радиолизе воды.
Во втором контуре, конденсатные трубопроводы которого изготавливаются из меди а питательные из нержавеющей стали, применение бескоррекционного режима осуществляется с помощью очистки всего потока конденсата в ионообменных фильтрах и удаления растворенных газов из конденсата в главном конденсаторе, деаэраторах и ионообменных фильтрах. При этом периодически, при выведенной из действия установке, осуществляется промывка трубных систем парогенераторов с целью удаления солевых отложений с внутренней поверхности труб ПГ.
Наиболее важным и ответственным направлением является выбор и поддержание водно-химического режима работы первого контура ЯППУ. Обычно при этом используются коррекционные водно-химические режимы, основными из которых являются аммиачный и аммиачно-фосфатный режимы.
Аммиачный режим создается и поддерживается за счет использования азота в системе компенсации объема теплоносителя, первоначального заполнения контура водой, содержащей раствор аммиака. При аммиачном режиме в контур вводится водный раствор аммиака (гидроокись аммиака NH4OH) так, чтобы его концентрация обеспечивала
слабощелочной режим в контуре при рН = 9 ÷ 10,5. Для предотвращения постоянной корректировки водного режима работы контура в ионообменном фильтре первого контура используется катионит в аммонийной форме и анионита в гидроксильной форме. Снижение концентрации растворенного кислорода достигается первоначальным введением в контур гидразин-гидрата, и в последующем при работе установки, как правило, не контролируется.
Лммиачно-фосфатный режим создается и поддерживается за счет использования азота в системе компенсации объема теплоносителя, первоначального заполнения контура водой, содержащей раствор аммиака и двузамещенного фосфата аммония.
При ухудшении показателей качества воды осуществляется промывка контура через ионообменные фильтры. Если при этом показатели качества не восстанавливаются, производится замена загрузки фильтра и промывка повторяется.
В некоторых типах установок с большим запасом реактивности в активной зоне для компенсации реактивности используется введение в первый контур раствора борной кислоты. При этом снижение рН не может быть полностью скомпенсировано аммиаком, поэтому дополнительно для поддержания слабощелочной среды приходится вводить в контур щелочи LiOH или КОН. Основным недостатком лития является образование тритиевой воды, являющейся одним из наиболее опасных радиоактивных отходов.
Поэтому наиболее предпочтительным является применение в таких установках раствора КОН, а водно-химический режим называют аммиачно-борно-калиевым режимом.