
- •Основы программирования
- •Введение
- •Основы delphi
- •Общая технология программирования
- •Язык программирования
- •Объектно-ориентированное программирование
- •Визуальное программирование
- •Событийно управляемое программирование
- •Windows-приложение
- •Среда программирования
- •Первоначальные сведения о проекте приложения
- •Встроенный отладчик
- •Использование встроенных классов
- •Иерархия классов
- •Использование палитры компонентов и инспектора объектов
- •Использование графики
- •Основные инструменты
- •Основные характеристики шрифтов
- •Графические данные и палитра
- •Некоторые общие свойства компонентов
- •Сохранение проекта
- •Построение простейшего проекта
- •Понятие исключительной ситуации
- •Введение в object pascal
- •Структура приложения
- •Структура программы-проекта
- •Структура модуля
- •Пример 1
- •Описания программных элементов
- •Программные элементы и адреса памяти
- •Области видимости
- •Правила записи имен
- •Время жизни идентификаторов
- •Использование локальных переменных в примере 1
- •Использование глобальных переменных в примере 1
- •Простые типы
- •Целые типы
- •Целые типы
- •Некоторые операции с целым типом
- •Символьные типы
- •Логические типы
- •Тип перечень
- •Интервальный тип
- •Вещественный тип
- •Вещественные типы
- •Некоторые операции с вещественным типом
- •Тип дата-время
- •Выражения
- •Константы
- •Типизированные константы.
- •Переменные
- •Операции
- •Унарная операция not (отрицание)
- •Логические операции and, or, xor
- •Функции
- •Порядок вычисления выражений
- •Виды операторов
- •Простые операторы
- •Составной оператор
- •Операторы условного перехода
- •Оператор if
- •Пример 2
- •Оператор case
- •Пример 3
- •Использование enter в примере 3
- •Операторы цикла
- •Оператор цикла for
- •Пример 4
- •Оператор цикла while
- •Пример 5
- •Оператор цикла repeat
- •Пример 6
- •Использование процедур break и continue
- •Пример 7
- •Массивы
- •Статические массивы
- •Динамические массивы
- •Пример 8
- •Пример 9
- •Записи (объединения)
- •Оператор with
- •Пример 10
- •Совместимость и преобразование типов данных
- •Идентичность типов
- •Совместимость типов
- •Совместимость по присваиванию
- •Преобразование типов
- •Операторы обработки исключительных ситуаций
- •Пример 11
- •Множества
- •Операции над множествами
- •Пример 12
- •Вариантный тип данных
- •Процедуры и функции
- •Процедура
- •Функция
- •Рекурсия
- •Формальные и фактические параметры
- •Параметры-значения
- •Параметры-переменные
- •Параметры-константы
- •Параметры без типа
- •Массивы открытого типа
- •Парамеры по умолчанию
- •Процедура exit
- •Директивы подпрограммы
- •Соглашения по передаче данных
- •Директива forward
- •Директива external
- •Директива assembler
- •Перегруженные подпрограммы
- •Пример 13
- •Инкапсуляция
- •Класс как объектный тип
- •Наследование
- •Области видимости
- •Операции is и as
- •Виды методов
- •Методы virtual и полиморфизм
- •Методы dynamic
- •Методы message
- •Методы abstract
- •Методы override
- •Методы class
- •Пример 14
- •Динамическое создание компонентов
- •Использование класса со счетчиком объектов
- •Отслеживание разрушения объектов
- •События
- •Указатели на методы
- •Пример 15
- •Типы ссылки на класс
- •Свойства
- •Свойства simple
- •Свойства enumerated
- •Свойства set
- •Свойства object
- •Свойства array
- •Задание начальных значений свойствам
- •Пример 16
- •Файловые типы
- •Текстовые файлы
- •Типизированные файлы
- •Файлы без типа
- •Дополнительные процедуры и функции
- •Пример 17
- •Компонент tmainmenu
- •Указатели
- •Пример 18
- •Динамические структуры данных
- •Однонаправленные списки
- •Двунаправленные списки
- •Стеки, очереди
- •Бинарные деревья
- •Пример 19
- •Процедурный тип
- •Программные единицы dll
- •Пример 20
- •Технологии программирования
- •Потоки данных
- •Пример 21
- •Пример 22
- •Интерфейс drag and drop
- •Пример 23
- •Технология drag and dock
- •Пример 24
- •Использование функций windows api при работе с файлами
- •Пример 25
- •Использование отображаемых файлов
- •Пример 26
- •Программные потоки
- •Приоритеты потоков
- •Класс tthread
- •Пример 27
- •Использование блокировки в примере 27
- •Многопоточное приложение в примере 28
- •Проблемы синхронизации потоков
- •Список используемых в примерах компонентов
- •Список используемых компонентов и других классов
- •Библиографический список
- •Оглавление
Программные потоки
Программные потоки (подзадачи, нити, Threads) – мощный инструмент, когда приложению необходимо выполнять сразу несколько действий (по крайней мере, они создают иллюзию одновременного выполнения нескольких операций). Если задачу приложения можно разделить на различные блоки: ввод или вывод, связь, обработка некоторых особых событий и т.д., то потоки могут быть органично встроены в программные решения. Сделав приложение многопоточным, можно получить дополнительные возможности управления с помощью изменения приоритетов потоков или, например, снять большую нагрузку на приложение, распределив ее между потоками.
Потоки в полной мере эксплуатируют операционную систему. Например, летяшие листы бумаги, которые мы видим, когда копируется файл, отображаются на экране, благодаря активной подзадаче, в то время как основной процесс занят копированием данных. На самом деле операционная система (если не используется многопроцессорные компьюторы) героически разрывается между различными процессами и подзадачами, периодически приостанавливая одну выполняемую задачу и переходя к следующей в вечно крутящейся карусели. Таким образом, поток – это объект, созданный внутри процесса и получающий время процессора, которое выделяется квантами.
Когда Windows загружает программу, строится процесс, для которого создается хотя бы один поток, чтобы запустить программный код. Процессы определяют данные, ресурсы, адресное пространство и пространство виртуальных адресов. Потоки, работающие в данном процессе, используют все ресурсы, предоставленные процессу операционной системой, и отвечают за выполнение кода. Потоки подразделяются на симметричные (они имеют одинаковое предназначение, исполняют один и тот же код и могут разделять одни и те же ресурсы) и асимметричные (решающие различные задачи и, как правило, не разделяющие совместные ресурсы).
Приоритеты потоков
Итак, каждый поток выполняется во всем выделенном пространстве памяти процесса. Таким образом, все подзадачи приложения могут видеть и изменять все глобальные данные. Поэтому при наличии нескольких потоков необходимо позаботиться о синхронизации их работы, так как операционная система выполняет переключения между подзадачами и основным процессом, выделяя, чаще всего, для них различное количество процессорного времени. Количеством выделяемого процессорного времени можно управлять с помощью назначаемых приоритетов.
Операционная система может назначать приоритеты в соответствии со своими установками, или можно задать нужный приоритет, используя специальные системные подпрограммы (например, SetPriorityClass). Система при выполнении приложения будет расставлять подзадачи в соответствии с их приоритетом и в том случае, когда нет доступных для выполнения подзадач с высоким приоритетом, выполняются подзадачи с приоритетом более низкого уровня. Если несколько подзадач имеют один итот же уровень приоритета, то они расставляются системой и выполняются одна за другой по кругу.
Приоритеты присваиваются отдельно процессам и каждому включенному в процесс потоку. Приоритет, устанавливаемый для процесса, известен как базовый приоритет (base priority). Базовый приоритет может изменяться от 0 до 31. Для потоков можно использовать приоритеты от 0 до 15, если процесс не имеет приоритета REALTIME_PRIORITY_CLASS. В табл. 16 приводятся основные сведения по приоритетам прцессов.
Таблица 16
Основные приоритеты (базовые), устанавливаемые для процессов
Класс приоритета |
Наименование |
Основной приоритет |
IDLE_PRIORITY_CLASS |
Пассивный (фоновый) |
4 |
NORMAL_PRIORITY_CLASS |
Нормальный |
7 (фоновый) или 9 (переднего плана) |
HIGH_PRIORITY_CLASS |
Высокий |
13 |
REALTIME_PRIORITY_CLASS |
Реального времени |
24 |
Существуют свои приоритеты и для потоков, но не абсолютные, а относительные – зависящие от приоритета порождающего их процесса. Таким образом при установке приоритета для потока необходимо сообщить системе, более высокий или низкий приоритет по сравнению с базовым следует установить, и система справится с этим сама. Естественно, чтобы выбрать для потока приоритет TIME_CRITICAL, нужно иметь очень веские основания, иначе другие процессы в системе могут не получить достаточного процессорного времени.